2023-11-19 更新
A Spectral Diffusion Prior for Hyperspectral Image Super-Resolution
Authors:Jianjun Liu, Zebin Wu, Liang Xiao
Fusion-based hyperspectral image (HSI) super-resolution aims to produce a high-spatial-resolution HSI by fusing a low-spatial-resolution HSI and a high-spatial-resolution multispectral image. Such a HSI super-resolution process can be modeled as an inverse problem, where the prior knowledge is essential for obtaining the desired solution. Motivated by the success of diffusion models, we propose a novel spectral diffusion prior for fusion-based HSI super-resolution. Specifically, we first investigate the spectrum generation problem and design a spectral diffusion model to model the spectral data distribution. Then, in the framework of maximum a posteriori, we keep the transition information between every two neighboring states during the reverse generative process, and thereby embed the knowledge of trained spectral diffusion model into the fusion problem in the form of a regularization term. At last, we treat each generation step of the final optimization problem as its subproblem, and employ the Adam to solve these subproblems in a reverse sequence. Experimental results conducted on both synthetic and real datasets demonstrate the effectiveness of the proposed approach. The code of the proposed approach will be available on https://github.com/liuofficial/SDP.
PDF
点此查看论文截图
Contrastive Transformer Learning with Proximity Data Generation for Text-Based Person Search
Authors:Hefeng Wu, Weifeng Chen, Zhibin Liu, Tianshui Chen, Zhiguang Chen, Liang Lin
Given a descriptive text query, text-based person search (TBPS) aims to retrieve the best-matched target person from an image gallery. Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data. To better align the two modalities, most existing works focus on introducing sophisticated network structures and auxiliary tasks, which are complex and hard to implement. In this paper, we propose a simple yet effective dual Transformer model for text-based person search. By exploiting a hardness-aware contrastive learning strategy, our model achieves state-of-the-art performance without any special design for local feature alignment or side information. Moreover, we propose a proximity data generation (PDG) module to automatically produce more diverse data for cross-modal training. The PDG module first introduces an automatic generation algorithm based on a text-to-image diffusion model, which generates new text-image pair samples in the proximity space of original ones. Then it combines approximate text generation and feature-level mixup during training to further strengthen the data diversity. The PDG module can largely guarantee the reasonability of the generated samples that are directly used for training without any human inspection for noise rejection. It improves the performance of our model significantly, providing a feasible solution to the data insufficiency problem faced by such fine-grained visual-linguistic tasks. Extensive experiments on two popular datasets of the TBPS task (i.e., CUHK-PEDES and ICFG-PEDES) show that the proposed approach outperforms state-of-the-art approaches evidently, e.g., improving by 3.88%, 4.02%, 2.92% in terms of Top1, Top5, Top10 on CUHK-PEDES. The codes will be available at https://github.com/HCPLab-SYSU/PersonSearch-CTLG
PDF Accepted by IEEE T-CSVT
点此查看论文截图
Fast Detection of Phase Transitions with Multi-Task Learning-by-Confusion
Authors:Julian Arnold, Frank Schäfer, Niels Lörch
Machine learning has been successfully used to study phase transitions. One of the most popular approaches to identifying critical points from data without prior knowledge of the underlying phases is the learning-by-confusion scheme. As input, it requires system samples drawn from a grid of the parameter whose change is associated with potential phase transitions. Up to now, the scheme required training a distinct binary classifier for each possible splitting of the grid into two sides, resulting in a computational cost that scales linearly with the number of grid points. In this work, we propose and showcase an alternative implementation that only requires the training of a single multi-class classifier. Ideally, such multi-task learning eliminates the scaling with respect to the number of grid points. In applications to the Ising model and an image dataset generated with Stable Diffusion, we find significant speedups that closely correspond to the ideal case, with only minor deviations.
PDF 7 pages, 3 figures, Machine Learning and the Physical Sciences Workshop, NeurIPS 2023
点此查看论文截图
DMV3D: Denoising Multi-View Diffusion using 3D Large Reconstruction Model
Authors:Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan Sunkavalli, Gordon Wetzstein, Zexiang Xu, Kai Zhang
We propose \textbf{DMV3D}, a novel 3D generation approach that uses a transformer-based 3D large reconstruction model to denoise multi-view diffusion. Our reconstruction model incorporates a triplane NeRF representation and can denoise noisy multi-view images via NeRF reconstruction and rendering, achieving single-stage 3D generation in $\sim$30s on single A100 GPU. We train \textbf{DMV3D} on large-scale multi-view image datasets of highly diverse objects using only image reconstruction losses, without accessing 3D assets. We demonstrate state-of-the-art results for the single-image reconstruction problem where probabilistic modeling of unseen object parts is required for generating diverse reconstructions with sharp textures. We also show high-quality text-to-3D generation results outperforming previous 3D diffusion models. Our project website is at: https://justimyhxu.github.io/projects/dmv3d/ .
PDF Project Page: https://justimyhxu.github.io/projects/dmv3d/
点此查看论文截图
Single-Image 3D Human Digitization with Shape-Guided Diffusion
Authors:Badour AlBahar, Shunsuke Saito, Hung-Yu Tseng, Changil Kim, Johannes Kopf, Jia-Bin Huang
We present an approach to generate a 360-degree view of a person with a consistent, high-resolution appearance from a single input image. NeRF and its variants typically require videos or images from different viewpoints. Most existing approaches taking monocular input either rely on ground-truth 3D scans for supervision or lack 3D consistency. While recent 3D generative models show promise of 3D consistent human digitization, these approaches do not generalize well to diverse clothing appearances, and the results lack photorealism. Unlike existing work, we utilize high-capacity 2D diffusion models pretrained for general image synthesis tasks as an appearance prior of clothed humans. To achieve better 3D consistency while retaining the input identity, we progressively synthesize multiple views of the human in the input image by inpainting missing regions with shape-guided diffusion conditioned on silhouette and surface normal. We then fuse these synthesized multi-view images via inverse rendering to obtain a fully textured high-resolution 3D mesh of the given person. Experiments show that our approach outperforms prior methods and achieves photorealistic 360-degree synthesis of a wide range of clothed humans with complex textures from a single image.
PDF SIGGRAPH Asia 2023. Project website: https://human-sgd.github.io/
点此查看论文截图
FastBlend: a Powerful Model-Free Toolkit Making Video Stylization Easier
Authors:Zhongjie Duan, Chengyu Wang, Cen Chen, Weining Qian, Jun Huang, Mingyi Jin
With the emergence of diffusion models and rapid development in image processing, it has become effortless to generate fancy images in tasks such as style transfer and image editing. However, these impressive image processing approaches face consistency issues in video processing. In this paper, we propose a powerful model-free toolkit called FastBlend to address the consistency problem for video processing. Based on a patch matching algorithm, we design two inference modes, including blending and interpolation. In the blending mode, FastBlend eliminates video flicker by blending the frames within a sliding window. Moreover, we optimize both computational efficiency and video quality according to different application scenarios. In the interpolation mode, given one or more keyframes rendered by diffusion models, FastBlend can render the whole video. Since FastBlend does not modify the generation process of diffusion models, it exhibits excellent compatibility. Extensive experiments have demonstrated the effectiveness of FastBlend. In the blending mode, FastBlend outperforms existing methods for video deflickering and video synthesis. In the interpolation mode, FastBlend surpasses video interpolation and model-based video processing approaches. The source codes have been released on GitHub.
PDF 13 pages, 10 figures
点此查看论文截图
Privacy Threats in Stable Diffusion Models
Authors:Thomas Cilloni, Charles Fleming, Charles Walter
This paper introduces a novel approach to membership inference attacks (MIA) targeting stable diffusion computer vision models, specifically focusing on the highly sophisticated Stable Diffusion V2 by StabilityAI. MIAs aim to extract sensitive information about a model’s training data, posing significant privacy concerns. Despite its advancements in image synthesis, our research reveals privacy vulnerabilities in the stable diffusion models’ outputs. Exploiting this information, we devise a black-box MIA that only needs to query the victim model repeatedly. Our methodology involves observing the output of a stable diffusion model at different generative epochs and training a classification model to distinguish when a series of intermediates originated from a training sample or not. We propose numerous ways to measure the membership features and discuss what works best. The attack’s efficacy is assessed using the ROC AUC method, demonstrating a 60\% success rate in inferring membership information. This paper contributes to the growing body of research on privacy and security in machine learning, highlighting the need for robust defenses against MIAs. Our findings prompt a reevaluation of the privacy implications of stable diffusion models, urging practitioners and developers to implement enhanced security measures to safeguard against such attacks.
PDF
点此查看论文截图
Synthetically Enhanced: Unveiling Synthetic Data’s Potential in Medical Imaging Research
Authors:Bardia Khosravi, Frank Li, Theo Dapamede, Pouria Rouzrokh, Cooper U. Gamble, Hari M. Trivedi, Cody C. Wyles, Andrew B. Sellergren, Saptarshi Purkayastha, Bradley J. Erickson, Judy W. Gichoya
Chest X-rays (CXR) are the most common medical imaging study and are used to diagnose multiple medical conditions. This study examines the impact of synthetic data supplementation, using diffusion models, on the performance of deep learning (DL) classifiers for CXR analysis. We employed three datasets: CheXpert, MIMIC-CXR, and Emory Chest X-ray, training conditional denoising diffusion probabilistic models (DDPMs) to generate synthetic frontal radiographs. Our approach ensured that synthetic images mirrored the demographic and pathological traits of the original data. Evaluating the classifiers’ performance on internal and external datasets revealed that synthetic data supplementation enhances model accuracy, particularly in detecting less prevalent pathologies. Furthermore, models trained on synthetic data alone approached the performance of those trained on real data. This suggests that synthetic data can potentially compensate for real data shortages in training robust DL models. However, despite promising outcomes, the superiority of real data persists.
PDF
点此查看论文截图
MDFL: Multi-domain Diffusion-driven Feature Learning
Authors:Daixun Li, Weiying Xie, Jiaqing Zhang, Yunsong Li
High-dimensional images, known for their rich semantic information, are widely applied in remote sensing and other fields. The spatial information in these images reflects the object’s texture features, while the spectral information reveals the potential spectral representations across different bands. Currently, the understanding of high-dimensional images remains limited to a single-domain perspective with performance degradation. Motivated by the masking texture effect observed in the human visual system, we present a multi-domain diffusion-driven feature learning network (MDFL) , a scheme to redefine the effective information domain that the model really focuses on. This method employs diffusion-based posterior sampling to explicitly consider joint information interactions between the high-dimensional manifold structures in the spectral, spatial, and frequency domains, thereby eliminating the influence of masking texture effects in visual models. Additionally, we introduce a feature reuse mechanism to gather deep and raw features of high-dimensional data. We demonstrate that MDFL significantly improves the feature extraction performance of high-dimensional data, thereby providing a powerful aid for revealing the intrinsic patterns and structures of such data. The experimental results on three multi-modal remote sensing datasets show that MDFL reaches an average overall accuracy of 98.25%, outperforming various state-of-the-art baseline schemes. The code will be released, contributing to the computer vision community.
PDF
点此查看论文截图
DECDM: Document Enhancement using Cycle-Consistent Diffusion Models
Authors:Jiaxin Zhang, Joy Rimchala, Lalla Mouatadid, Kamalika Das, Sricharan Kumar
The performance of optical character recognition (OCR) heavily relies on document image quality, which is crucial for automatic document processing and document intelligence. However, most existing document enhancement methods require supervised data pairs, which raises concerns about data separation and privacy protection, and makes it challenging to adapt these methods to new domain pairs. To address these issues, we propose DECDM, an end-to-end document-level image translation method inspired by recent advances in diffusion models. Our method overcomes the limitations of paired training by independently training the source (noisy input) and target (clean output) models, making it possible to apply domain-specific diffusion models to other pairs. DECDM trains on one dataset at a time, eliminating the need to scan both datasets concurrently, and effectively preserving data privacy from the source or target domain. We also introduce simple data augmentation strategies to improve character-glyph conservation during translation. We compare DECDM with state-of-the-art methods on multiple synthetic data and benchmark datasets, such as document denoising and {\color{black}shadow} removal, and demonstrate the superiority of performance quantitatively and qualitatively.
PDF Accepted by IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024)
点此查看论文截图
DIFFNAT: Improving Diffusion Image Quality Using Natural Image Statistics
Authors:Aniket Roy, Maiterya Suin, Anshul Shah, Ketul Shah, Jiang Liu, Rama Chellappa
Diffusion models have advanced generative AI significantly in terms of editing and creating naturalistic images. However, efficiently improving generated image quality is still of paramount interest. In this context, we propose a generic “naturalness” preserving loss function, viz., kurtosis concentration (KC) loss, which can be readily applied to any standard diffusion model pipeline to elevate the image quality. Our motivation stems from the projected kurtosis concentration property of natural images, which states that natural images have nearly constant kurtosis values across different band-pass versions of the image. To retain the “naturalness” of the generated images, we enforce reducing the gap between the highest and lowest kurtosis values across the band-pass versions (e.g., Discrete Wavelet Transform (DWT)) of images. Note that our approach does not require any additional guidance like classifier or classifier-free guidance to improve the image quality. We validate the proposed approach for three diverse tasks, viz., (1) personalized few-shot finetuning using text guidance, (2) unconditional image generation, and (3) image super-resolution. Integrating the proposed KC loss has improved the perceptual quality across all these tasks in terms of both FID, MUSIQ score, and user evaluation.
PDF
点此查看论文截图
Diffusion-Augmented Neural Processes
Authors:Lorenzo Bonito, James Requeima, Aliaksandra Shysheya, Richard E. Turner
Over the last few years, Neural Processes have become a useful modelling tool in many application areas, such as healthcare and climate sciences, in which data are scarce and prediction uncertainty estimates are indispensable. However, the current state of the art in the field (AR CNPs; Bruinsma et al., 2023) presents a few issues that prevent its widespread deployment. This work proposes an alternative, diffusion-based approach to NPs which, through conditioning on noised datasets, addresses many of these limitations, whilst also exceeding SOTA performance.
PDF Accepted to the NeurIPS 2023 Workshop on Diffusion Models
点此查看论文截图
DSR-Diff: Depth Map Super-Resolution with Diffusion Model
Authors:Yuan Shi, Bin Xia, Rui Zhu, Qingmin Liao, Wenming Yang
Color-guided depth map super-resolution (CDSR) improve the spatial resolution of a low-quality depth map with the corresponding high-quality color map, benefiting various applications such as 3D reconstruction, virtual reality, and augmented reality. While conventional CDSR methods typically rely on convolutional neural networks or transformers, diffusion models (DMs) have demonstrated notable effectiveness in high-level vision tasks. In this work, we present a novel CDSR paradigm that utilizes a diffusion model within the latent space to generate guidance for depth map super-resolution. The proposed method comprises a guidance generation network (GGN), a depth map super-resolution network (DSRN), and a guidance recovery network (GRN). The GGN is specifically designed to generate the guidance while managing its compactness. Additionally, we integrate a simple but effective feature fusion module and a transformer-style feature extraction module into the DSRN, enabling it to leverage guided priors in the extraction, fusion, and reconstruction of multi-model images. Taking into account both accuracy and efficiency, our proposed method has shown superior performance in extensive experiments when compared to state-of-the-art methods. Our codes will be made available at https://github.com/shiyuan7/DSR-Diff.
PDF
点此查看论文截图
TransFusion — A Transparency-Based Diffusion Model for Anomaly Detection
Authors:Matic Fučka, Vitjan Zavrtanik, Danijel Skočaj
Surface anomaly detection is a vital component in manufacturing inspection. Reconstructive anomaly detection methods restore the normal appearance of an object, ideally modifying only the anomalous regions. Due to the limitations of commonly used reconstruction architectures, the produced reconstructions are often poor and either still contain anomalies or lack details in anomaly-free regions. Recent reconstructive methods adopt diffusion models, however with the standard diffusion process the problems are not adequately addressed. We propose a novel transparency-based diffusion process, where the transparency of anomalous regions is progressively increased, restoring their normal appearance accurately and maintaining the appearance of anomaly-free regions without loss of detail. We propose TRANSparency DifFUSION (TransFusion), a discriminative anomaly detection method that implements the proposed diffusion process, enabling accurate downstream anomaly detection. TransFusion achieves state-of-the-art performance on both the VisA and the MVTec AD datasets, with an image-level AUROC of 98.5% and 99.2%, respectively.
PDF 10 pages, 5 figures
点此查看论文截图
The Chosen One: Consistent Characters in Text-to-Image Diffusion Models
Authors:Omri Avrahami, Amir Hertz, Yael Vinker, Moab Arar, Shlomi Fruchter, Ohad Fried, Daniel Cohen-Or, Dani Lischinski
Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at https://omriavrahami.com/the-chosen-one
PDF Project page is available at https://omriavrahami.com/the-chosen-one