2023-11-05 更新
Text-driven Editing of 3D Scenes without Retraining
Authors:Shuangkang Fang, Yufeng Wang, Yi Yang, Yi-Hsuan Tsai, Wenrui Ding, Shuchang Zhou, Ming-Hsuan Yang
Numerous diffusion models have recently been applied to image synthesis and editing. However, editing 3D scenes is still in its early stages. It poses various challenges, such as the requirement to design specific methods for different editing types, retraining new models for various 3D scenes, and the absence of convenient human interaction during editing. To tackle these issues, we introduce a text-driven editing method, termed DN2N, which allows for the direct acquisition of a NeRF model with universal editing capabilities, eliminating the requirement for retraining. Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images, followed by a filtering process to discard poorly edited images that disrupt 3D consistency. We then consider the remaining inconsistency as a problem of removing noise perturbation, which can be solved by generating training data with similar perturbation characteristics for training. We further propose cross-view regularization terms to help the generalized NeRF model mitigate these perturbations. Our text-driven method allows users to edit a 3D scene with their desired description, which is more friendly, intuitive, and practical than prior works. Empirical results show that our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer. Most importantly, our method generalizes well with editing abilities shared among a set of model parameters without requiring a customized editing model for some specific scenes, thus inferring novel views with editing effects directly from user input. The project website is available at https://sk-fun.fun/DN2N
PDF Project Website: https://sk-fun.fun/DN2N
点此查看论文截图
Diving into the Depths of Spotting Text in Multi-Domain Noisy Scenes
Authors:Alloy Das, Sanket Biswas, Umapada Pal, Josep Lladós
When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and fine-tuning strategies on natural scene datasets, which do not exploit the feature interaction across other complex domains. In this work, we explore and investigate the problem of domain-agnostic scene text spotting, i.e., training a model on multi-domain source data such that it can directly generalize to target domains rather than being specialized for a specific domain or scenario. In this regard, we present the community a text spotting validation benchmark called Under-Water Text (UWT) for noisy underwater scenes to establish an important case study. Moreover, we also design an efficient super-resolution based end-to-end transformer baseline called DA-TextSpotter which achieves comparable or superior performance over existing text spotting architectures for both regular and arbitrary-shaped scene text spotting benchmarks in terms of both accuracy and model efficiency. The dataset, code and pre-trained models will be released upon acceptance.
PDF 10 images
点此查看论文截图
Symmetrical Linguistic Feature Distillation with CLIP for Scene Text Recognition
Authors:Zixiao Wang, Hongtao Xie, Yuxin Wang, Jianjun Xu, Boqiang Zhang, Yongdong Zhang
In this paper, we explore the potential of the Contrastive Language-Image Pretraining (CLIP) model in scene text recognition (STR), and establish a novel Symmetrical Linguistic Feature Distillation framework (named CLIP-OCR) to leverage both visual and linguistic knowledge in CLIP. Different from previous CLIP-based methods mainly considering feature generalization on visual encoding, we propose a symmetrical distillation strategy (SDS) that further captures the linguistic knowledge in the CLIP text encoder. By cascading the CLIP image encoder with the reversed CLIP text encoder, a symmetrical structure is built with an image-to-text feature flow that covers not only visual but also linguistic information for distillation.Benefiting from the natural alignment in CLIP, such guidance flow provides a progressive optimization objective from vision to language, which can supervise the STR feature forwarding process layer-by-layer.Besides, a new Linguistic Consistency Loss (LCL) is proposed to enhance the linguistic capability by considering second-order statistics during the optimization. Overall, CLIP-OCR is the first to design a smooth transition between image and text for the STR task.Extensive experiments demonstrate the effectiveness of CLIP-OCR with 93.8% average accuracy on six popular STR benchmarks.Code will be available at https://github.com/wzx99/CLIPOCR.
PDF Accepted by ACM MM 2023
点此查看论文截图
On Manipulating Scene Text in the Wild with Diffusion Models
Authors:Joshua Santoso, Christian Simon, Williem Pao
Diffusion models have gained attention for image editing yielding impressive results in text-to-image tasks. On the downside, one might notice that generated images of stable diffusion models suffer from deteriorated details. This pitfall impacts image editing tasks that require information preservation e.g., scene text editing. As a desired result, the model must show the capability to replace the text on the source image to the target text while preserving the details e.g., color, font size, and background. To leverage the potential of diffusion models, in this work, we introduce Diffusion-BasEd Scene Text manipulation Network so-called DBEST. Specifically, we design two adaptation strategies, namely one-shot style adaptation and text-recognition guidance. In experiments, we thoroughly assess and compare our proposed method against state-of-the-arts on various scene text datasets, then provide extensive ablation studies for each granularity to analyze our performance gain. Also, we demonstrate the effectiveness of our proposed method to synthesize scene text indicated by competitive Optical Character Recognition (OCR) accuracy. Our method achieves 94.15% and 98.12% on COCO-text and ICDAR2013 datasets for character-level evaluation.
PDF Accepted to WACV 2024