Domain Adaptation


2023-08-28 更新

Match-And-Deform: Time Series Domain Adaptation through Optimal Transport and Temporal Alignment

Authors:François Painblanc, Laetitia Chapel, Nicolas Courty, Chloé Friguet, Charlotte Pelletier, Romain Tavenard

While large volumes of unlabeled data are usually available, associated labels are often scarce. The unsupervised domain adaptation problem aims at exploiting labels from a source domain to classify data from a related, yet different, target domain. When time series are at stake, new difficulties arise as temporal shifts may appear in addition to the standard feature distribution shift. In this paper, we introduce the Match-And-Deform (MAD) approach that aims at finding correspondences between the source and target time series while allowing temporal distortions. The associated optimization problem simultaneously aligns the series thanks to an optimal transport loss and the time stamps through dynamic time warping. When embedded into a deep neural network, MAD helps learning new representations of time series that both align the domains and maximize the discriminative power of the network. Empirical studies on benchmark datasets and remote sensing data demonstrate that MAD makes meaningful sample-to-sample pairing and time shift estimation, reaching similar or better classification performance than state-of-the-art deep time series domain adaptation strategies.
PDF

点此查看论文截图

Diverse, Top-k, and Top-Quality Planning Over Simulators

Authors:Lyndon Benke, Tim Miller, Michael Papasimeon, Nir Lipovetzky

Diverse, top-k, and top-quality planning are concerned with the generation of sets of solutions to sequential decision problems. Previously this area has been the domain of classical planners that require a symbolic model of the problem instance. This paper proposes a novel alternative approach that uses Monte Carlo Tree Search (MCTS), enabling application to problems for which only a black-box simulation model is available. We present a procedure for extracting bounded sets of plans from pre-generated search trees in best-first order, and a metric for evaluating the relative quality of paths through a search tree. We demonstrate this approach on a path-planning problem with hidden information, and suggest adaptations to the MCTS algorithm to increase the diversity of generated plans. Our results show that our method can generate diverse and high-quality plan sets in domains where classical planners are not applicable.
PDF This paper has been accepted at the 26th European Conference on Artificial Intelligence (ECAI 2023)

点此查看论文截图

Black-box Unsupervised Domain Adaptation with Bi-directional Atkinson-Shiffrin Memory

Authors:Jingyi Zhang, Jiaxing Huang, Xueying Jiang, Shijian Lu

Black-box unsupervised domain adaptation (UDA) learns with source predictions of target data without accessing either source data or source models during training, and it has clear superiority in data privacy and flexibility in target network selection. However, the source predictions of target data are often noisy and training with them is prone to learning collapses. We propose BiMem, a bi-directional memorization mechanism that learns to remember useful and representative information to correct noisy pseudo labels on the fly, leading to robust black-box UDA that can generalize across different visual recognition tasks. BiMem constructs three types of memory, including sensory memory, short-term memory, and long-term memory, which interact in a bi-directional manner for comprehensive and robust memorization of learnt features. It includes a forward memorization flow that identifies and stores useful features and a backward calibration flow that rectifies features’ pseudo labels progressively. Extensive experiments show that BiMem achieves superior domain adaptation performance consistently across various visual recognition tasks such as image classification, semantic segmentation and object detection.
PDF Accepted to ICCV2023

点此查看论文截图

Unsupervised Domain Adaptation for Anatomical Landmark Detection

Authors:Haibo Jin, Haoxuan Che, Hao Chen

Recently, anatomical landmark detection has achieved great progresses on single-domain data, which usually assumes training and test sets are from the same domain. However, such an assumption is not always true in practice, which can cause significant performance drop due to domain shift. To tackle this problem, we propose a novel framework for anatomical landmark detection under the setting of unsupervised domain adaptation (UDA), which aims to transfer the knowledge from labeled source domain to unlabeled target domain. The framework leverages self-training and domain adversarial learning to address the domain gap during adaptation. Specifically, a self-training strategy is proposed to select reliable landmark-level pseudo-labels of target domain data with dynamic thresholds, which makes the adaptation more effective. Furthermore, a domain adversarial learning module is designed to handle the unaligned data distributions of two domains by learning domain-invariant features via adversarial training. Our experiments on cephalometric and lung landmark detection show the effectiveness of the method, which reduces the domain gap by a large margin and outperforms other UDA methods consistently. The code is available at https://github.com/jhb86253817/UDA_Med_Landmark.
PDF Accepted to MICCAI 2023

点此查看论文截图

ARTIST: ARTificial Intelligence for Simplified Text

Authors:Lorenzo Corti, Jie Yang

Complex text is a major barrier for many citizens when accessing public information and knowledge. While often done manually, Text Simplification is a key Natural Language Processing task that aims for reducing the linguistic complexity of a text while preserving the original meaning. Recent advances in Generative Artificial Intelligence (AI) have enabled automatic text simplification both on the lexical and syntactical levels. However, as applications often focus on English, little is understood about the effectiveness of Generative AI techniques on low-resource languages such as Dutch. For this reason, we carry out empirical studies to understand the benefits and limitations of applying generative technologies for text simplification and provide the following outcomes: 1) the design and implementation for a configurable text simplification pipeline that orchestrates state-of-the-art generative text simplification models, domain and reader adaptation, and visualisation modules; 2) insights and lessons learned, showing the strengths of automatic text simplification while exposing the challenges in handling cultural and commonsense knowledge. These outcomes represent a first step in the exploration of Dutch text simplification and shed light on future endeavours both for research and practice.
PDF 6 pages, 1 figure. Presented at the ‘Generative AI and HCI’ workshop (https://generativeaiandhci.github.io/) at CHI 2023 in Hamburg, Germany

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录