人脸相关


2023-08-26 更新

Attention Consistency Refined Masked Frequency Forgery Representation for Generalizing Face Forgery Detection

Authors:Decheng Liu, Tao Chen, Chunlei Peng, Nannan Wang, Ruimin Hu, Xinbo Gao

Due to the successful development of deep image generation technology, visual data forgery detection would play a more important role in social and economic security. Existing forgery detection methods suffer from unsatisfactory generalization ability to determine the authenticity in the unseen domain. In this paper, we propose a novel Attention Consistency Refined masked frequency forgery representation model toward generalizing face forgery detection algorithm (ACMF). Most forgery technologies always bring in high-frequency aware cues, which make it easy to distinguish source authenticity but difficult to generalize to unseen artifact types. The masked frequency forgery representation module is designed to explore robust forgery cues by randomly discarding high-frequency information. In addition, we find that the forgery attention map inconsistency through the detection network could affect the generalizability. Thus, the forgery attention consistency is introduced to force detectors to focus on similar attention regions for better generalization ability. Experiment results on several public face forgery datasets (FaceForensic++, DFD, Celeb-DF, and WDF datasets) demonstrate the superior performance of the proposed method compared with the state-of-the-art methods.
PDF The source code and models are publicly available at https://github.com/chenboluo/ACMF

点此查看论文截图

Controllable Guide-Space for Generalizable Face Forgery Detection

Authors:Ying Guo, Cheng Zhen, Pengfei Yan

Recent studies on face forgery detection have shown satisfactory performance for methods involved in training datasets, but are not ideal enough for unknown domains. This motivates many works to improve the generalization, but forgery-irrelevant information, such as image background and identity, still exists in different domain features and causes unexpected clustering, limiting the generalization. In this paper, we propose a controllable guide-space (GS) method to enhance the discrimination of different forgery domains, so as to increase the forgery relevance of features and thereby improve the generalization. The well-designed guide-space can simultaneously achieve both the proper separation of forgery domains and the large distance between real-forgery domains in an explicit and controllable manner. Moreover, for better discrimination, we use a decoupling module to weaken the interference of forgery-irrelevant correlations between domains. Furthermore, we make adjustments to the decision boundary manifold according to the clustering degree of the same domain features within the neighborhood. Extensive experiments in multiple in-domain and cross-domain settings confirm that our method can achieve state-of-the-art generalization.
PDF Accepted by ICCV 2023

点此查看论文截图

Deep Boosting Multi-Modal Ensemble Face Recognition with Sample-Level Weighting

Authors:Sahar Rahimi Malakshan, Mohammad Saeed Ebrahimi Saadabadi, Nima Najafzadeh, Nasser M. Nasrabadi

Deep convolutional neural networks have achieved remarkable success in face recognition (FR), partly due to the abundant data availability. However, the current training benchmarks exhibit an imbalanced quality distribution; most images are of high quality. This poses issues for generalization on hard samples since they are underrepresented during training. In this work, we employ the multi-model boosting technique to deal with this issue. Inspired by the well-known AdaBoost, we propose a sample-level weighting approach to incorporate the importance of different samples into the FR loss. Individual models of the proposed framework are experts at distinct levels of sample hardness. Therefore, the combination of models leads to a robust feature extractor without losing the discriminability on the easy samples. Also, for incorporating the sample hardness into the training criterion, we analytically show the effect of sample mining on the important aspects of current angular margin loss functions, i.e., margin and scale. The proposed method shows superior performance in comparison with the state-of-the-art algorithms in extensive experiments on the CFP-FP, LFW, CPLFW, CALFW, AgeDB, TinyFace, IJB-B, and IJB-C evaluation datasets.
PDF 2023 IEEE International Joint Conference on Biometrics (IJCB)

点此查看论文截图

Privacy-Preserving Face Recognition Using Random Frequency Components

Authors:Yuxi Mi, Yuge Huang, Jiazhen Ji, Minyi Zhao, Jiaxiang Wu, Xingkun Xu, Shouhong Ding, Shuigeng Zhou

The ubiquitous use of face recognition has sparked increasing privacy concerns, as unauthorized access to sensitive face images could compromise the information of individuals. This paper presents an in-depth study of the privacy protection of face images’ visual information and against recovery. Drawing on the perceptual disparity between humans and models, we propose to conceal visual information by pruning human-perceivable low-frequency components. For impeding recovery, we first elucidate the seeming paradox between reducing model-exploitable information and retaining high recognition accuracy. Based on recent theoretical insights and our observation on model attention, we propose a solution to the dilemma, by advocating for the training and inference of recognition models on randomly selected frequency components. We distill our findings into a novel privacy-preserving face recognition method, PartialFace. Extensive experiments demonstrate that PartialFace effectively balances privacy protection goals and recognition accuracy. Code is available at: https://github.com/Tencent/TFace.
PDF ICCV 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录