强化学习


2023-08-26 更新

Offline Multi-Agent Reinforcement Learning with Implicit Global-to-Local Value Regularization

Authors:Xiangsen Wang, Haoran Xu, Yinan Zheng, Xianyuan Zhan

Offline reinforcement learning (RL) has received considerable attention in recent years due to its attractive capability of learning policies from offline datasets without environmental interactions. Despite some success in the single-agent setting, offline multi-agent RL (MARL) remains to be a challenge. The large joint state-action space and the coupled multi-agent behaviors pose extra complexities for offline policy optimization. Most existing offline MARL studies simply apply offline data-related regularizations on individual agents, without fully considering the multi-agent system at the global level. In this work, we present OMIGA, a new offline m ulti-agent RL algorithm with implicit global-to-local v alue regularization. OMIGA provides a principled framework to convert global-level value regularization into equivalent implicit local value regularizations and simultaneously enables in-sample learning, thus elegantly bridging multi-agent value decomposition and policy learning with offline regularizations. Based on comprehensive experiments on the offline multi-agent MuJoCo and StarCraft II micro-management tasks, we show that OMIGA achieves superior performance over the state-of-the-art offline MARL methods in almost all tasks.
PDF

点此查看论文截图

Robust Multi-Agent Reinforcement Learning with State Uncertainty

Authors:Sihong He, Songyang Han, Sanbao Su, Shuo Han, Shaofeng Zou, Fei Miao

In real-world multi-agent reinforcement learning (MARL) applications, agents may not have perfect state information (e.g., due to inaccurate measurement or malicious attacks), which challenges the robustness of agents’ policies. Though robustness is getting important in MARL deployment, little prior work has studied state uncertainties in MARL, neither in problem formulation nor algorithm design. Motivated by this robustness issue and the lack of corresponding studies, we study the problem of MARL with state uncertainty in this work. We provide the first attempt to the theoretical and empirical analysis of this challenging problem. We first model the problem as a Markov Game with state perturbation adversaries (MG-SPA) by introducing a set of state perturbation adversaries into a Markov Game. We then introduce robust equilibrium (RE) as the solution concept of an MG-SPA. We conduct a fundamental analysis regarding MG-SPA such as giving conditions under which such a robust equilibrium exists. Then we propose a robust multi-agent Q-learning (RMAQ) algorithm to find such an equilibrium, with convergence guarantees. To handle high-dimensional state-action space, we design a robust multi-agent actor-critic (RMAAC) algorithm based on an analytical expression of the policy gradient derived in the paper. Our experiments show that the proposed RMAQ algorithm converges to the optimal value function; our RMAAC algorithm outperforms several MARL and robust MARL methods in multiple multi-agent environments when state uncertainty is present. The source code is public on \url{https://github.com/sihongho/robust_marl_with_state_uncertainty}.
PDF 50 pages, Published in TMLR, Transactions on Machine Learning Research (06/2023)

点此查看论文截图

Heterogeneous Multi-Agent Reinforcement Learning via Mirror Descent Policy Optimization

Authors:Mohammad Mehdi Nasiri, Mansoor Rezghi

This paper presents an extension of the Mirror Descent method to overcome challenges in cooperative Multi-Agent Reinforcement Learning (MARL) settings, where agents have varying abilities and individual policies. The proposed Heterogeneous-Agent Mirror Descent Policy Optimization (HAMDPO) algorithm utilizes the multi-agent advantage decomposition lemma to enable efficient policy updates for each agent while ensuring overall performance improvements. By iteratively updating agent policies through an approximate solution of the trust-region problem, HAMDPO guarantees stability and improves performance. Moreover, the HAMDPO algorithm is capable of handling both continuous and discrete action spaces for heterogeneous agents in various MARL problems. We evaluate HAMDPO on Multi-Agent MuJoCo and StarCraftII tasks, demonstrating its superiority over state-of-the-art algorithms such as HATRPO and HAPPO. These results suggest that HAMDPO is a promising approach for solving cooperative MARL problems and could potentially be extended to address other challenging problems in the field of MARL.
PDF

点此查看论文截图

FoX: Formation-aware exploration in multi-agent reinforcement learning

Authors:Yonghyeon Jo, Sunwoo Lee, Junghyuk Yum, Seungyul Han

Recently, deep multi-agent reinforcement learning (MARL) has gained significant popularity due to its success in various cooperative multi-agent tasks. However, exploration still remains a challenging problem in MARL due to the partial observability of the agents and the exploration space that can grow exponentially as the number of agents increases. Firstly, in order to address the scalability issue of the exploration space, we define a formation-based equivalence relation on the exploration space and aim to reduce the search space by exploring only meaningful states in different formations. Then, we propose a novel formation-aware exploration (FoX) framework that encourages partially observable agents to visit the states in diverse formations by guiding them to be well aware of their current formation solely based on their own observations. Numerical results show that the proposed FoX framework significantly outperforms the state-of-the-art MARL algorithms on Google Research Football (GRF) and sparse Starcraft II multi-agent challenge (SMAC) tasks.
PDF 7 pages main, 5 pages appendix with reference. 10 figures, submitted for AAAI

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录