NeRF


2023-06-22 更新

MA-NeRF: Motion-Assisted Neural Radiance Fields for Face Synthesis from Sparse Images

Authors:Weichen Zhang, Xiang Zhou, YuKang Cao, WenSen Feng, Chun Yuan

We address the problem of photorealistic 3D face avatar synthesis from sparse images. Existing Parametric models for face avatar reconstruction struggle to generate details that originate from inputs. Meanwhile, although current NeRF-based avatar methods provide promising results for novel view synthesis, they fail to generalize well for unseen expressions. We improve from NeRF and propose a novel framework that, by leveraging the parametric 3DMM models, can reconstruct a high-fidelity drivable face avatar and successfully handle the unseen expressions. At the core of our implementation are structured displacement feature and semantic-aware learning module. Our structured displacement feature will introduce the motion prior as an additional constraints and help perform better for unseen expressions, by constructing displacement volume. Besides, the semantic-aware learning incorporates multi-level prior, e.g., semantic embedding, learnable latent code, to lift the performance to a higher level. Thorough experiments have been doen both quantitatively and qualitatively to demonstrate the design of our framework, and our method achieves much better results than the current state-of-the-arts.
PDF

点此查看论文截图

Instruct-NeuralTalker: Editing Audio-Driven Talking Radiance Fields with Instructions

Authors:Yuqi Sun, Reian He, Weimin Tan, Bo Yan

Recent neural talking radiance field methods have shown great success in photorealistic audio-driven talking face synthesis. In this paper, we propose a novel interactive framework that utilizes human instructions to edit such implicit neural representations to achieve real-time personalized talking face generation. Given a short speech video, we first build an efficient talking radiance field, and then apply the latest conditional diffusion model for image editing based on the given instructions and guiding implicit representation optimization towards the editing target. To ensure audio-lip synchronization during the editing process, we propose an iterative dataset updating strategy and utilize a lip-edge loss to constrain changes in the lip region. We also introduce a lightweight refinement network for complementing image details and achieving controllable detail generation in the final rendered image. Our method also enables real-time rendering at up to 30FPS on consumer hardware. Multiple metrics and user verification show that our approach provides a significant improvement in rendering quality compared to state-of-the-art methods.
PDF 11 pages, 8 figures

点此查看论文截图

Benchmarking and Analyzing 3D-aware Image Synthesis with a Modularized Codebase

Authors:Qiuyu Wang, Zifan Shi, Kecheng Zheng, Yinghao Xu, Sida Peng, Yujun Shen

Despite the rapid advance of 3D-aware image synthesis, existing studies usually adopt a mixture of techniques and tricks, leaving it unclear how each part contributes to the final performance in terms of generality. Following the most popular and effective paradigm in this field, which incorporates a neural radiance field (NeRF) into the generator of a generative adversarial network (GAN), we build a well-structured codebase, dubbed Carver, through modularizing the generation process. Such a design allows researchers to develop and replace each module independently, and hence offers an opportunity to fairly compare various approaches and recognize their contributions from the module perspective. The reproduction of a range of cutting-edge algorithms demonstrates the availability of our modularized codebase. We also perform a variety of in-depth analyses, such as the comparison across different types of point feature, the necessity of the tailing upsampler in the generator, the reliance on the camera pose prior, etc., which deepen our understanding of existing methods and point out some further directions of the research work. We release code and models at https://github.com/qiuyu96/Carver to facilitate the development and evaluation of this field.
PDF Code: https://github.com/qiuyu96/Carver

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录