Diffusion Models


2023-05-29 更新

Are Diffusion Models Vision-And-Language Reasoners?

Authors:Benno Krojer, Elinor Poole-Dayan, Vikram Voleti, Christopher Pal, Siva Reddy

Text-conditioned image generation models have recently shown immense qualitative success using denoising diffusion processes. However, unlike discriminative vision-and-language models, it is a non-trivial task to subject these diffusion-based generative models to automatic fine-grained quantitative evaluation of high-level phenomena such as compositionality. Towards this goal, we perform two innovations. First, we transform diffusion-based models (in our case, Stable Diffusion) for any image-text matching (ITM) task using a novel method called DiffusionITM. Second, we introduce the Generative-Discriminative Evaluation Benchmark (GDBench) benchmark with 7 complex vision-and-language tasks, bias evaluation and detailed analysis. We find that Stable Diffusion + DiffusionITM is competitive on many tasks and outperforms CLIP on compositional tasks like like CLEVR and Winoground. We further boost its compositional performance with a transfer setup by fine-tuning on MS-COCO while retaining generative capabilities. We also measure the stereotypical bias in diffusion models, and find that Stable Diffusion 2.1 is, for the most part, less biased than Stable Diffusion 1.5. Overall, our results point in an exciting direction bringing discriminative and generative model evaluation closer. We will release code and benchmark setup soon.
PDF

点此查看论文截图

Diffusion-Based Adversarial Sample Generation for Improved Stealthiness and Controllability

Authors:Haotian Xue, Alexandre Araujo, Bin Hu, Yongxin Chen

Neural networks are known to be susceptible to adversarial samples: small variations of natural examples crafted to deliberately mislead the models. While they can be easily generated using gradient-based techniques in digital and physical scenarios, they often differ greatly from the actual data distribution of natural images, resulting in a trade-off between strength and stealthiness. In this paper, we propose a novel framework dubbed Diffusion-Based Projected Gradient Descent (Diff-PGD) for generating realistic adversarial samples. By exploiting a gradient guided by a diffusion model, Diff-PGD ensures that adversarial samples remain close to the original data distribution while maintaining their effectiveness. Moreover, our framework can be easily customized for specific tasks such as digital attacks, physical-world attacks, and style-based attacks. Compared with existing methods for generating natural-style adversarial samples, our framework enables the separation of optimizing adversarial loss from other surrogate losses (e.g., content/smoothness/style loss), making it more stable and controllable. Finally, we demonstrate that the samples generated using Diff-PGD have better transferability and anti-purification power than traditional gradient-based methods. Code will be released in https://github.com/xavihart/Diff-PGD
PDF code repo: https://github.com/xavihart/Diff-PGD

点此查看论文截图

Graph Neural Convection-Diffusion with Heterophily

Authors:Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, Wee Peng Tay

Graph neural networks (GNNs) have shown promising results across various graph learning tasks, but they often assume homophily, which can result in poor performance on heterophilic graphs. The connected nodes are likely to be from different classes or have dissimilar features on heterophilic graphs. In this paper, we propose a novel GNN that incorporates the principle of heterophily by modeling the flow of information on nodes using the convection-diffusion equation (CDE). This allows the CDE to take into account both the diffusion of information due to homophily and the ``convection’’ of information due to heterophily. We conduct extensive experiments, which suggest that our framework can achieve competitive performance on node classification tasks for heterophilic graphs, compared to the state-of-the-art methods. The code is available at \url{https://github.com/zknus/Graph-Diffusion-CDE}.
PDF Proc. International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, Aug. 2023

点此查看论文截图

Improved Visual Story Generation with Adaptive Context Modeling

Authors:Zhangyin Feng, Yuchen Ren, Xinmiao Yu, Xiaocheng Feng, Duyu Tang, Shuming Shi, Bing Qin

Diffusion models developed on top of powerful text-to-image generation models like Stable Diffusion achieve remarkable success in visual story generation. However, the best-performing approach considers historically generated results as flattened memory cells, ignoring the fact that not all preceding images contribute equally to the generation of the characters and scenes at the current stage. To address this, we present a simple method that improves the leading system with adaptive context modeling, which is not only incorporated in the encoder but also adopted as additional guidance in the sampling stage to boost the global consistency of the generated story. We evaluate our model on PororoSV and FlintstonesSV datasets and show that our approach achieves state-of-the-art FID scores on both story visualization and continuation scenarios. We conduct detailed model analysis and show that our model excels at generating semantically consistent images for stories.
PDF

点此查看论文截图

DiffusionNAG: Task-guided Neural Architecture Generation with Diffusion Models

Authors:Sohyun An, Hayeon Lee, Jaehyeong Jo, Seanie Lee, Sung Ju Hwang

Neural Architecture Search (NAS) has emerged as a powerful technique for automating neural architecture design. However, existing NAS methods either require an excessive amount of time for repetitive training or sampling of many task-irrelevant architectures. Moreover, they lack generalization across different tasks and usually require searching for optimal architectures for each task from scratch without reusing the knowledge from the previous NAS tasks. To tackle such limitations of existing NAS methods, we propose a novel transferable task-guided Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG. With the guidance of a surrogate model, such as a performance predictor for a given task, our DiffusionNAG can generate task-optimal architectures for diverse tasks, including unseen tasks. DiffusionNAG is highly efficient as it generates task-optimal neural architectures by leveraging the prior knowledge obtained from the previous tasks and neural architecture distribution. Furthermore, we introduce a score network to ensure the generation of valid architectures represented as directed acyclic graphs, unlike existing graph generative models that focus on generating undirected graphs. Extensive experiments demonstrate that DiffusionNAG significantly outperforms the state-of-the-art transferable NAG model in architecture generation quality, as well as previous NAS methods on four computer vision datasets with largely reduced computational cost.
PDF

点此查看论文截图

Learning to Imagine: Visually-Augmented Natural Language Generation

Authors:Tianyi Tang, Yushuo Chen, Yifan Du, Junyi Li, Wayne Xin Zhao, Ji-Rong Wen

People often imagine relevant scenes to aid in the writing process. In this work, we aim to utilize visual information for composition in the same manner as humans. We propose a method, LIVE, that makes pre-trained language models (PLMs) Learn to Imagine for Visuallyaugmented natural language gEneration. First, we imagine the scene based on the text: we use a diffusion model to synthesize high-quality images conditioned on the input texts. Second, we use CLIP to determine whether the text can evoke the imagination in a posterior way. Finally, our imagination is dynamic, and we conduct synthesis for each sentence rather than generate only one image for an entire paragraph. Technically, we propose a novel plug-and-play fusion layer to obtain visually-augmented representations for each text. Our vision-text fusion layer is compatible with Transformerbased architecture. We have conducted extensive experiments on four generation tasks using BART and T5, and the automatic results and human evaluation demonstrate the effectiveness of our proposed method. We will release the code, model, and data at the link: https://github.com/RUCAIBox/LIVE.
PDF Accepted by ACL 2023

点此查看论文截图

Accelerating Diffusion Models for Inverse Problems through Shortcut Sampling

Authors:Gongye Liu, Haoze Sun, Jiayi Li, Fei Yin, Yujiu Yang

Recently, diffusion models have demonstrated a remarkable ability to solve inverse problems in an unsupervised manner. Existing methods mainly focus on modifying the posterior sampling process while neglecting the potential of the forward process. In this work, we propose Shortcut Sampling for Diffusion (SSD), a novel pipeline for solving inverse problems. Instead of initiating from random noise, the key concept of SSD is to find the “Embryo”, a transitional state that bridges the measurement image y and the restored image x. By utilizing the “shortcut” path of “input-Embryo-output”, SSD can achieve precise and fast restoration. To obtain the Embryo in the forward process, We propose Distortion Adaptive Inversion (DA Inversion). Moreover, we apply back projection and attention injection as additional consistency constraints during the generation process. Experimentally, we demonstrate the effectiveness of SSD on several representative tasks, including super-resolution, deblurring, and colorization. Compared to state-of-the-art zero-shot methods, our method achieves competitive results with only 30 NFEs. Moreover, SSD with 100 NFEs can outperform state-of-the-art zero-shot methods in certain tasks.
PDF

点此查看论文截图

ControlVideo: Adding Conditional Control for One Shot Text-to-Video Editing

Authors:Min Zhao, Rongzhen Wang, Fan Bao, Chongxuan Li, Jun Zhu

In this paper, we present ControlVideo, a novel method for text-driven video editing. Leveraging the capabilities of text-to-image diffusion models and ControlNet, ControlVideo aims to enhance the fidelity and temporal consistency of videos that align with a given text while preserving the structure of the source video. This is achieved by incorporating additional conditions such as edge maps, fine-tuning the key-frame and temporal attention on the source video-text pair with carefully designed strategies. An in-depth exploration of ControlVideo’s design is conducted to inform future research on one-shot tuning video diffusion models. Quantitatively, ControlVideo outperforms a range of competitive baselines in terms of faithfulness and consistency while still aligning with the textual prompt. Additionally, it delivers videos with high visual realism and fidelity w.r.t. the source content, demonstrating flexibility in utilizing controls containing varying degrees of source video information, and the potential for multiple control combinations. The project page is available at \href{https://ml.cs.tsinghua.edu.cn/controlvideo/}{https://ml.cs.tsinghua.edu.cn/controlvideo/}.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录