2023-05-25 更新
Weakly-Supervised Concealed Object Segmentation with SAM-based Pseudo Labeling and Multi-scale Feature Grouping
Authors:Chunming He, Kai Li, Yachao Zhang, Guoxia Xu, Longxiang Tang, Yulun Zhang, Zhenhua Guo, Xiu Li
Weakly-Supervised Concealed Object Segmentation (WSCOS) aims to segment objects well blended with surrounding environments using sparsely-annotated data for model training. It remains a challenging task since (1) it is hard to distinguish concealed objects from the background due to the intrinsic similarity and (2) the sparsely-annotated training data only provide weak supervision for model learning. In this paper, we propose a new WSCOS method to address these two challenges. To tackle the intrinsic similarity challenge, we design a multi-scale feature grouping module that first groups features at different granularities and then aggregates these grouping results. By grouping similar features together, it encourages segmentation coherence, helping obtain complete segmentation results for both single and multiple-object images. For the weak supervision challenge, we utilize the recently-proposed vision foundation model, Segment Anything Model (SAM), and use the provided sparse annotations as prompts to generate segmentation masks, which are used to train the model. To alleviate the impact of low-quality segmentation masks, we further propose a series of strategies, including multi-augmentation result ensemble, entropy-based pixel-level weighting, and entropy-based image-level selection. These strategies help provide more reliable supervision to train the segmentation model. We verify the effectiveness of our method on various WSCOS tasks, and experiments demonstrate that our method achieves state-of-the-art performance on these tasks.
PDF 12 pages, 5 figures
点此查看论文截图
Few-Shot Learning with Visual Distribution Calibration and Cross-Modal Distribution Alignment
Authors:Runqi Wang, Hao Zheng, Xiaoyue Duan, Jianzhuang Liu, Yuning Lu, Tian Wang, Songcen Xu, Baochang Zhang
Pre-trained vision-language models have inspired much research on few-shot learning. However, with only a few training images, there exist two crucial problems: (1) the visual feature distributions are easily distracted by class-irrelevant information in images, and (2) the alignment between the visual and language feature distributions is difficult. To deal with the distraction problem, we propose a Selective Attack module, which consists of trainable adapters that generate spatial attention maps of images to guide the attacks on class-irrelevant image areas. By messing up these areas, the critical features are captured and the visual distributions of image features are calibrated. To better align the visual and language feature distributions that describe the same object class, we propose a cross-modal distribution alignment module, in which we introduce a vision-language prototype for each class to align the distributions, and adopt the Earth Mover’s Distance (EMD) to optimize the prototypes. For efficient computation, the upper bound of EMD is derived. In addition, we propose an augmentation strategy to increase the diversity of the images and the text prompts, which can reduce overfitting to the few-shot training images. Extensive experiments on 11 datasets demonstrate that our method consistently outperforms prior arts in few-shot learning. The implementation code will be available at https://github.com/bhrqw/SADA.
PDF
点此查看论文截图
SurgMAE: Masked Autoencoders for Long Surgical Video Analysis
Authors:Muhammad Abdullah Jamal, Omid Mohareri
There has been a growing interest in using deep learning models for processing long surgical videos, in order to automatically detect clinical/operational activities and extract metrics that can enable workflow efficiency tools and applications. However, training such models require vast amounts of labeled data which is costly and not scalable. Recently, self-supervised learning has been explored in computer vision community to reduce the burden of the annotation cost. Masked autoencoders (MAE) got the attention in self-supervised paradigm for Vision Transformers (ViTs) by predicting the randomly masked regions given the visible patches of an image or a video clip, and have shown superior performance on benchmark datasets. However, the application of MAE in surgical data remains unexplored. In this paper, we first investigate whether MAE can learn transferrable representations in surgical video domain. We propose SurgMAE, which is a novel architecture with a masking strategy based on sampling high spatio-temporal tokens for MAE. We provide an empirical study of SurgMAE on two large scale long surgical video datasets, and find that our method outperforms several baselines in low data regime. We conduct extensive ablation studies to show the efficacy of our approach and also demonstrate it’s superior performance on UCF-101 to prove it’s generalizability in non-surgical datasets as well.
PDF
点此查看论文截图
Comparative Analysis of Deep Learning Models for Brand Logo Classification in Real-World Scenarios
Authors:Qimao Yang, Huili Chen, Qiwei Dong
This report presents a comprehensive study on deep learning models for brand logo classification in real-world scenarios. The dataset contains 3,717 labeled images of logos from ten prominent brands. Two types of models, Convolutional Neural Networks (CNN) and Vision Transformer (ViT), were evaluated for their performance. The ViT model, DaViT small, achieved the highest accuracy of 99.60%, while the DenseNet29 achieved the fastest inference speed of 366.62 FPS. The findings suggest that the DaViT model is a suitable choice for offline applications due to its superior accuracy. This study demonstrates the practical application of deep learning in brand logo classification tasks.
PDF
点此查看论文截图
VisorGPT: Learning Visual Prior via Generative Pre-Training
Authors:Jinheng Xie, Kai Ye, Yudong Li, Yuexiang Li, Kevin Qinghong Lin, Yefeng Zheng, Linlin Shen, Mike Zheng Shou
Various stuff and things in visual data possess specific traits, which can be learned by deep neural networks and are implicitly represented as the visual prior, \emph{e.g.,} object location and shape, in the model. Such prior potentially impacts many vision tasks. For example, in conditional image synthesis, spatial conditions failing to adhere to the prior can result in visually inaccurate synthetic results. This work aims to explicitly learn the visual prior and enable the customization of sampling. Inspired by advances in language modeling, we propose to learn Visual prior via Generative Pre-Training, dubbed VisorGPT. By discretizing visual locations of objects, \emph{e.g.,} bounding boxes, human pose, and instance masks, into sequences, \our~can model visual prior through likelihood maximization. Besides, prompt engineering is investigated to unify various visual locations and enable customized sampling of sequential outputs from the learned prior. Experimental results demonstrate that \our~can effectively model the visual prior, which can be employed for many vision tasks, such as customizing accurate human pose for conditional image synthesis models like ControlNet. Code will be released at https://github.com/Sierkinhane/VisorGPT.
PDF Project web-page: https://sierkinhane.github.io/visor-gpt/
点此查看论文截图
Dual Path Transformer with Partition Attention
Authors:Zhengkai Jiang, Liang Liu, Jiangning Zhang, Yabiao Wang, Mingang Chen, Chengjie Wang
This paper introduces a novel attention mechanism, called dual attention, which is both efficient and effective. The dual attention mechanism consists of two parallel components: local attention generated by Convolutional Neural Networks (CNNs) and long-range attention generated by Vision Transformers (ViTs). To address the high computational complexity and memory footprint of vanilla Multi-Head Self-Attention (MHSA), we introduce a novel Multi-Head Partition-wise Attention (MHPA) mechanism. The partition-wise attention approach models both intra-partition and inter-partition attention simultaneously. Building on the dual attention block and partition-wise attention mechanism, we present a hierarchical vision backbone called DualFormer. We evaluate the effectiveness of our model on several computer vision tasks, including image classification on ImageNet, object detection on COCO, and semantic segmentation on Cityscapes. Specifically, the proposed DualFormer-XS achieves 81.5\% top-1 accuracy on ImageNet, outperforming the recent state-of-the-art MPViT-XS by 0.6\% top-1 accuracy with much higher throughput.
PDF
点此查看论文截图
ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers
Authors:Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang
Recently, plain vision Transformers (ViTs) have shown impressive performance on various computer vision tasks, thanks to their strong modeling capacity and large-scale pretraining. However, they have not yet conquered the problem of image matting. We hypothesize that image matting could also be boosted by ViTs and present a new efficient and robust ViT-based matting system, named ViTMatte. Our method utilizes (i) a hybrid attention mechanism combined with a convolution neck to help ViTs achieve an excellent performance-computation trade-off in matting tasks. (ii) Additionally, we introduce the detail capture module, which just consists of simple lightweight convolutions to complement the detailed information required by matting. To the best of our knowledge, ViTMatte is the first work to unleash the potential of ViT on image matting with concise adaptation. It inherits many superior properties from ViT to matting, including various pretraining strategies, concise architecture design, and flexible inference strategies. We evaluate ViTMatte on Composition-1k and Distinctions-646, the most commonly used benchmark for image matting, our method achieves state-of-the-art performance and outperforms prior matting works by a large margin.
PDF