检测/分割/跟踪


2023-05-16 更新

Quaternion-valued Correlation Learning for Few-Shot Semantic Segmentation

Authors:Zewen Zheng, Guoheng Huang, Xiaochen Yuan, Chi-Man Pun, Hongrui Liu, Wing-Kuen Ling

Few-shot segmentation (FSS) aims to segment unseen classes given only a few annotated samples. Encouraging progress has been made for FSS by leveraging semantic features learned from base classes with sufficient training samples to represent novel classes. The correlation-based methods lack the ability to consider interaction of the two subspace matching scores due to the inherent nature of the real-valued 2D convolutions. In this paper, we introduce a quaternion perspective on correlation learning and propose a novel Quaternion-valued Correlation Learning Network (QCLNet), with the aim to alleviate the computational burden of high-dimensional correlation tensor and explore internal latent interaction between query and support images by leveraging operations defined by the established quaternion algebra. Specifically, our QCLNet is formulated as a hyper-complex valued network and represents correlation tensors in the quaternion domain, which uses quaternion-valued convolution to explore the external relations of query subspace when considering the hidden relationship of the support sub-dimension in the quaternion space. Extensive experiments on the PASCAL-5i and COCO-20i datasets demonstrate that our method outperforms the existing state-of-the-art methods effectively. Our code is available at https://github.com/zwzheng98/QCLNet
PDF for associated paper file, see https://ieeexplore.ieee.org/document/9954424?source=authoralert

点此查看论文截图

Multi-Modal 3D Object Detection by Box Matching

Authors:Zhe Liu, Xiaoqing Ye, Zhikang Zou, Xinwei He, Xiao Tan, Errui Ding, Jingdong Wang, Xiang Bai

Multi-modal 3D object detection has received growing attention as the information from different sensors like LiDAR and cameras are complementary. Most fusion methods for 3D detection rely on an accurate alignment and calibration between 3D point clouds and RGB images. However, such an assumption is not reliable in a real-world self-driving system, as the alignment between different modalities is easily affected by asynchronous sensors and disturbed sensor placement. We propose a novel {F}usion network by {B}ox {M}atching (FBMNet) for multi-modal 3D detection, which provides an alternative way for cross-modal feature alignment by learning the correspondence at the bounding box level to free up the dependency of calibration during inference. With the learned assignments between 3D and 2D object proposals, the fusion for detection can be effectively performed by combing their ROI features. Extensive experiments on the nuScenes dataset demonstrate that our method is much more stable in dealing with challenging cases such as asynchronous sensors, misaligned sensor placement, and degenerated camera images than existing fusion methods. We hope that our FBMNet could provide an available solution to dealing with these challenging cases for safety in real autonomous driving scenarios. Codes will be publicly available at https://github.com/happinesslz/FBMNet.
PDF

点此查看论文截图

Not All Pixels Are Equal: Learning Pixel Hardness for Semantic Segmentation

Authors:Xin Xiao, Daiguo Zhou, Jiagao Hu, Yi Hu, Yongchao Xu

Semantic segmentation has recently witnessed great progress. Despite the impressive overall results, the segmentation performance in some hard areas (e.g., small objects or thin parts) is still not promising. A straightforward solution is hard sample mining, which is widely used in object detection. Yet, most existing hard pixel mining strategies for semantic segmentation often rely on pixel’s loss value, which tends to decrease during training. Intuitively, the pixel hardness for segmentation mainly depends on image structure and is expected to be stable. In this paper, we propose to learn pixel hardness for semantic segmentation, leveraging hardness information contained in global and historical loss values. More precisely, we add a gradient-independent branch for learning a hardness level (HL) map by maximizing hardness-weighted segmentation loss, which is minimized for the segmentation head. This encourages large hardness values in difficult areas, leading to appropriate and stable HL map. Despite its simplicity, the proposed method can be applied to most segmentation methods with no and marginal extra cost during inference and training, respectively. Without bells and whistles, the proposed method achieves consistent/significant improvement (1.37% mIoU on average) over most popular semantic segmentation methods on Cityscapes dataset, and demonstrates good generalization ability across domains. The source codes are available at https://github.com/Menoly-xin/Hardness-Level-Learning .
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录