Vision Transformer


2023-05-15 更新

Salient Mask-Guided Vision Transformer for Fine-Grained Classification

Authors:Dmitry Demidov, Muhammad Hamza Sharif, Aliakbar Abdurahimov, Hisham Cholakkal, Fahad Shahbaz Khan

Fine-grained visual classification (FGVC) is a challenging computer vision problem, where the task is to automatically recognise objects from subordinate categories. One of its main difficulties is capturing the most discriminative inter-class variances among visually similar classes. Recently, methods with Vision Transformer (ViT) have demonstrated noticeable achievements in FGVC, generally by employing the self-attention mechanism with additional resource-consuming techniques to distinguish potentially discriminative regions while disregarding the rest. However, such approaches may struggle to effectively focus on truly discriminative regions due to only relying on the inherent self-attention mechanism, resulting in the classification token likely aggregating global information from less-important background patches. Moreover, due to the immense lack of the datapoints, classifiers may fail to find the most helpful inter-class distinguishing features, since other unrelated but distinctive background regions may be falsely recognised as being valuable. To this end, we introduce a simple yet effective Salient Mask-Guided Vision Transformer (SM-ViT), where the discriminability of the standard ViT`s attention maps is boosted through salient masking of potentially discriminative foreground regions. Extensive experiments demonstrate that with the standard training procedure our SM-ViT achieves state-of-the-art performance on popular FGVC benchmarks among existing ViT-based approaches while requiring fewer resources and lower input image resolution.
PDF Accepted by VISAPP 2023 (Best Student Paper Award)

点此查看论文截图

OneCAD: One Classifier for All image Datasets using multimodal learning

Authors:Shakti N. Wadekar, Eugenio Culurciello

Vision-Transformers (ViTs) and Convolutional neural networks (CNNs) are widely used Deep Neural Networks (DNNs) for classification task. These model architectures are dependent on the number of classes in the dataset it was trained on. Any change in number of classes leads to change (partial or full) in the model’s architecture. This work addresses the question: Is it possible to create a number-of-class-agnostic model architecture?. This allows model’s architecture to be independent of the dataset it is trained on. This work highlights the issues with the current architectures (ViTs and CNNs). Also, proposes a training and inference framework OneCAD (One Classifier for All image Datasets) to achieve close-to number-of-class-agnostic transformer model. To best of our knowledge this is the first work to use Mask-Image-Modeling (MIM) with multimodal learning for classification task to create a DNN model architecture agnostic to the number of classes. Preliminary results are shown on natural and medical image datasets. Datasets: MNIST, CIFAR10, CIFAR100 and COVIDx. Code will soon be publicly available on github.
PDF 8 pages, 6 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录