Diffusion Models


2023-04-21 更新

DiFaReli : Diffusion Face Relighting

Authors:Puntawat Ponglertnapakorn, Nontawat Tritrong, Supasorn Suwajanakorn

We present a novel approach to single-view face relighting in the wild. Handling non-diffuse effects, such as global illumination or cast shadows, has long been a challenge in face relighting. Prior work often assumes Lambertian surfaces, simplified lighting models or involves estimating 3D shape, albedo, or a shadow map. This estimation, however, is error-prone and requires many training examples with lighting ground truth to generalize well. Our work bypasses the need for accurate estimation of intrinsic components and can be trained solely on 2D images without any light stage data, multi-view images, or lighting ground truth. Our key idea is to leverage a conditional diffusion implicit model (DDIM) for decoding a disentangled light encoding along with other encodings related to 3D shape and facial identity inferred from off-the-shelf estimators. We also propose a novel conditioning technique that eases the modeling of the complex interaction between light and geometry by using a rendered shading reference to spatially modulate the DDIM. We achieve state-of-the-art performance on standard benchmark Multi-PIE and can photorealistically relight in-the-wild images. Please visit our page: https://diffusion-face-relighting.github.io
PDF

点此查看论文截图

NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion Models

Authors:Seung Wook Kim, Bradley Brown, Kangxue Yin, Karsten Kreis, Katja Schwarz, Daiqing Li, Robin Rombach, Antonio Torralba, Sanja Fidler

Automatically generating high-quality real world 3D scenes is of enormous interest for applications such as virtual reality and robotics simulation. Towards this goal, we introduce NeuralField-LDM, a generative model capable of synthesizing complex 3D environments. We leverage Latent Diffusion Models that have been successfully utilized for efficient high-quality 2D content creation. We first train a scene auto-encoder to express a set of image and pose pairs as a neural field, represented as density and feature voxel grids that can be projected to produce novel views of the scene. To further compress this representation, we train a latent-autoencoder that maps the voxel grids to a set of latent representations. A hierarchical diffusion model is then fit to the latents to complete the scene generation pipeline. We achieve a substantial improvement over existing state-of-the-art scene generation models. Additionally, we show how NeuralField-LDM can be used for a variety of 3D content creation applications, including conditional scene generation, scene inpainting and scene style manipulation.
PDF CVPR 2023

点此查看论文截图

A data augmentation perspective on diffusion models and retrieval

Authors:Max F. Burg, Florian Wenzel, Dominik Zietlow, Max Horn, Osama Makansi, Francesco Locatello, Chris Russell

Diffusion models excel at generating photorealistic images from text-queries. Naturally, many approaches have been proposed to use these generative abilities to augment training datasets for downstream tasks, such as classification. However, diffusion models are themselves trained on large noisily supervised, but nonetheless, annotated datasets. It is an open question whether the generalization capabilities of diffusion models beyond using the additional data of the pre-training process for augmentation lead to improved downstream performance. We perform a systematic evaluation of existing methods to generate images from diffusion models and study new extensions to assess their benefit for data augmentation. While we find that personalizing diffusion models towards the target data outperforms simpler prompting strategies, we also show that using the training data of the diffusion model alone, via a simple nearest neighbor retrieval procedure, leads to even stronger downstream performance. Overall, our study probes the limitations of diffusion models for data augmentation but also highlights its potential in generating new training data to improve performance on simple downstream vision tasks.
PDF

点此查看论文截图

Anything-3D: Towards Single-view Anything Reconstruction in the Wild

Authors:Qiuhong Shen, Xingyi Yang, Xinchao Wang

3D reconstruction from a single-RGB image in unconstrained real-world scenarios presents numerous challenges due to the inherent diversity and complexity of objects and environments. In this paper, we introduce Anything-3D, a methodical framework that ingeniously combines a series of visual-language models and the Segment-Anything object segmentation model to elevate objects to 3D, yielding a reliable and versatile system for single-view conditioned 3D reconstruction task. Our approach employs a BLIP model to generate textural descriptions, utilizes the Segment-Anything model for the effective extraction of objects of interest, and leverages a text-to-image diffusion model to lift object into a neural radiance field. Demonstrating its ability to produce accurate and detailed 3D reconstructions for a wide array of objects, \emph{Anything-3D\footnotemark[2]} shows promise in addressing the limitations of existing methodologies. Through comprehensive experiments and evaluations on various datasets, we showcase the merits of our approach, underscoring its potential to contribute meaningfully to the field of 3D reconstruction. Demos and code will be available at \href{https://github.com/Anything-of-anything/Anything-3D}{https://github.com/Anything-of-anything/Anything-3D}.
PDF

点此查看论文截图

Collaborative Diffusion for Multi-Modal Face Generation and Editing

Authors:Ziqi Huang, Kelvin C. K. Chan, Yuming Jiang, Ziwei Liu

Diffusion models arise as a powerful generative tool recently. Despite the great progress, existing diffusion models mainly focus on uni-modal control, i.e., the diffusion process is driven by only one modality of condition. To further unleash the users’ creativity, it is desirable for the model to be controllable by multiple modalities simultaneously, e.g., generating and editing faces by describing the age (text-driven) while drawing the face shape (mask-driven). In this work, we present Collaborative Diffusion, where pre-trained uni-modal diffusion models collaborate to achieve multi-modal face generation and editing without re-training. Our key insight is that diffusion models driven by different modalities are inherently complementary regarding the latent denoising steps, where bilateral connections can be established upon. Specifically, we propose dynamic diffuser, a meta-network that adaptively hallucinates multi-modal denoising steps by predicting the spatial-temporal influence functions for each pre-trained uni-modal model. Collaborative Diffusion not only collaborates generation capabilities from uni-modal diffusion models, but also integrates multiple uni-modal manipulations to perform multi-modal editing. Extensive qualitative and quantitative experiments demonstrate the superiority of our framework in both image quality and condition consistency.
PDF CVPR 2023. Project page: https://ziqihuangg.github.io/projects/collaborative-diffusion.html Code: https://github.com/ziqihuangg/Collaborative-Diffusion

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录