检测/分割/跟踪


2023-04-12 更新

SATR: Zero-Shot Semantic Segmentation of 3D Shapes

Authors:Ahmed Abdelreheem, Ivan Skorokhodov, Maks Ovsjanikov, Peter Wonka

We explore the task of zero-shot semantic segmentation of 3D shapes by using large-scale off-the-shelf 2D image recognition models. Surprisingly, we find that modern zero-shot 2D object detectors are better suited for this task than contemporary text/image similarity predictors or even zero-shot 2D segmentation networks. Our key finding is that it is possible to extract accurate 3D segmentation maps from multi-view bounding box predictions by using the topological properties of the underlying surface. For this, we develop the Segmentation Assignment with Topological Reweighting (SATR) algorithm and evaluate it on two challenging benchmarks: FAUST and ShapeNetPart. On these datasets, SATR achieves state-of-the-art performance and outperforms prior work by at least 22\% on average in terms of mIoU. Our source code and data will be publicly released. Project webpage: https://samir55.github.io/SATR/
PDF Project webpage: https://samir55.github.io/SATR/

点此查看论文截图

Authors:Jingyi Xu, Hieu Le, Dimitris Samaras

Two-stage object detectors generate object proposals and classify them to detect objects in images. These proposals often do not contain the objects perfectly but overlap with them in many possible ways, exhibiting great variability in the difficulty levels of the proposals. Training a robust classifier against this crop-related variability requires abundant training data, which is not available in few-shot settings. To mitigate this issue, we propose a novel variational autoencoder (VAE) based data generation model, which is capable of generating data with increased crop-related diversity. The main idea is to transform the latent space such latent codes with different norms represent different crop-related variations. This allows us to generate features with increased crop-related diversity in difficulty levels by simply varying the latent norm. In particular, each latent code is rescaled such that its norm linearly correlates with the IoU score of the input crop w.r.t. the ground-truth box. Here the IoU score is a proxy that represents the difficulty level of the crop. We train this VAE model on base classes conditioned on the semantic code of each class and then use the trained model to generate features for novel classes. In our experiments our generated features consistently improve state-of-the-art few-shot object detection methods on the PASCAL VOC and MS COCO datasets.
PDF Accepted to CVPR 23

点此查看论文截图

PP-MobileSeg: Explore the Fast and Accurate Semantic Segmentation Model on Mobile Devices

Authors:Shiyu Tang, Ting Sun, Juncai Peng, Guowei Chen, Yuying Hao, Manhui Lin, Zhihong Xiao, Jiangbin You, Yi Liu

The success of transformers in computer vision has led to several attempts to adapt them for mobile devices, but their performance remains unsatisfactory in some real-world applications. To address this issue, we propose PP-MobileSeg, a semantic segmentation model that achieves state-of-the-art performance on mobile devices. PP-MobileSeg comprises three novel parts: the StrideFormer backbone, the Aggregated Attention Module (AAM), and the Valid Interpolate Module (VIM). The four-stage StrideFormer backbone is built with MV3 blocks and strided SEA attention, and it is able to extract rich semantic and detailed features with minimal parameter overhead. The AAM first filters the detailed features through semantic feature ensemble voting and then combines them with semantic features to enhance the semantic information. Furthermore, we proposed VIM to upsample the downsampled feature to the resolution of the input image. It significantly reduces model latency by only interpolating classes present in the final prediction, which is the most significant contributor to overall model latency. Extensive experiments show that PP-MobileSeg achieves a superior tradeoff between accuracy, model size, and latency compared to other methods. On the ADE20K dataset, PP-MobileSeg achieves 1.57% higher accuracy in mIoU than SeaFormer-Base with 32.9% fewer parameters and 42.3% faster acceleration on Qualcomm Snapdragon 855. Source codes are available at https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.8.
PDF 8 pages, 3 figures

点此查看论文截图

A Comprehensive Study on Object Detection Techniques in Unconstrained Environments

Authors:Hrishitva Patel

Object detection is a crucial task in computer vision that aims to identify and localize objects in images or videos. The recent advancements in deep learning and Convolutional Neural Networks (CNNs) have significantly improved the performance of object detection techniques. This paper presents a comprehensive study of object detection techniques in unconstrained environments, including various challenges, datasets, and state-of-the-art approaches. Additionally, we present a comparative analysis of the methods and highlight their strengths and weaknesses. Finally, we provide some future research directions to further improve object detection in unconstrained environments.
PDF 9 pages, 3 Figures, 2 Tables

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录