检测/分割/跟踪


2023-03-24 更新

Weakly-Supervised Text Instance Segmentation

Authors:Xinyan Zu, Haiyang Yu, Bin Li, Xiangyang Xue

Text segmentation is a challenging vision task with many downstream applications. Current text segmentation methods require pixel-level annotations, which are expensive in the cost of human labor and limited in application scenarios. In this paper, we take the first attempt to perform weakly-supervised text instance segmentation by bridging text recognition and text segmentation. The insight is that text recognition methods provide precise attention position of each text instance, and the attention location can feed to both a text adaptive refinement head (TAR) and a text segmentation head. Specifically, the proposed TAR generates pseudo labels by performing two-stage iterative refinement operations on the attention location to fit the accurate boundaries of the corresponding text instance. Meanwhile, the text segmentation head takes the rough attention location to predict segmentation masks which are supervised by the aforementioned pseudo labels. In addition, we design a mask-augmented contrastive learning by treating our segmentation result as an augmented version of the input text image, thus improving the visual representation and further enhancing the performance of both recognition and segmentation. The experimental results demonstrate that the proposed method significantly outperforms weakly-supervised instance segmentation methods on ICDAR13-FST (18.95$\%$ improvement) and TextSeg (17.80$\%$ improvement) benchmarks.
PDF

点此查看论文截图

MonoATT: Online Monocular 3D Object Detection with Adaptive Token Transformer

Authors:Yunsong Zhou, Hongzi Zhu, Quan Liu, Shan Chang, Minyi Guo

Mobile monocular 3D object detection (Mono3D) (e.g., on a vehicle, a drone, or a robot) is an important yet challenging task. Existing transformer-based offline Mono3D models adopt grid-based vision tokens, which is suboptimal when using coarse tokens due to the limited available computational power. In this paper, we propose an online Mono3D framework, called MonoATT, which leverages a novel vision transformer with heterogeneous tokens of varying shapes and sizes to facilitate mobile Mono3D. The core idea of MonoATT is to adaptively assign finer tokens to areas of more significance before utilizing a transformer to enhance Mono3D. To this end, we first use prior knowledge to design a scoring network for selecting the most important areas of the image, and then propose a token clustering and merging network with an attention mechanism to gradually merge tokens around the selected areas in multiple stages. Finally, a pixel-level feature map is reconstructed from heterogeneous tokens before employing a SOTA Mono3D detector as the underlying detection core. Experiment results on the real-world KITTI dataset demonstrate that MonoATT can effectively improve the Mono3D accuracy for both near and far objects and guarantee low latency. MonoATT yields the best performance compared with the state-of-the-art methods by a large margin and is ranked number one on the KITTI 3D benchmark.
PDF in the Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023

点此查看论文截图

Open-Vocabulary Object Detection using Pseudo Caption Labels

Authors:Han-Cheol Cho, Won Young Jhoo, Wooyoung Kang, Byungseok Roh

Recent open-vocabulary detection methods aim to detect novel objects by distilling knowledge from vision-language models (VLMs) trained on a vast amount of image-text pairs. To improve the effectiveness of these methods, researchers have utilized datasets with a large vocabulary that contains a large number of object classes, under the assumption that such data will enable models to extract comprehensive knowledge on the relationships between various objects and better generalize to unseen object classes. In this study, we argue that more fine-grained labels are necessary to extract richer knowledge about novel objects, including object attributes and relationships, in addition to their names. To address this challenge, we propose a simple and effective method named Pseudo Caption Labeling (PCL), which utilizes an image captioning model to generate captions that describe object instances from diverse perspectives. The resulting pseudo caption labels offer dense samples for knowledge distillation. On the LVIS benchmark, our best model trained on the de-duplicated VisualGenome dataset achieves an AP of 34.5 and an APr of 30.6, comparable to the state-of-the-art performance. PCL’s simplicity and flexibility are other notable features, as it is a straightforward pre-processing technique that can be used with any image captioning model without imposing any restrictions on model architecture or training process.
PDF

点此查看论文截图

Explore the Power of Synthetic Data on Few-shot Object Detection

Authors:Shaobo Lin, Kun Wang, Xingyu Zeng, Rui Zhao

Few-shot object detection (FSOD) aims to expand an object detector for novel categories given only a few instances for training. The few training samples restrict the performance of FSOD model. Recent text-to-image generation models have shown promising results in generating high-quality images. How applicable these synthetic images are for FSOD tasks remains under-explored. This work extensively studies how synthetic images generated from state-of-the-art text-to-image generators benefit FSOD tasks. We focus on two perspectives: (1) How to use synthetic data for FSOD? (2) How to find representative samples from the large-scale synthetic dataset? We design a copy-paste-based pipeline for using synthetic data. Specifically, saliency object detection is applied to the original generated image, and the minimum enclosing box is used for cropping the main object based on the saliency map. After that, the cropped object is randomly pasted on the image, which comes from the base dataset. We also study the influence of the input text of text-to-image generator and the number of synthetic images used. To construct a representative synthetic training dataset, we maximize the diversity of the selected images via a sample-based and cluster-based method. However, the severe problem of high false positives (FP) ratio of novel categories in FSOD can not be solved by using synthetic data. We propose integrating CLIP, a zero-shot recognition model, into the FSOD pipeline, which can filter 90% of FP by defining a threshold for the similarity score between the detected object and the text of the predicted category. Extensive experiments on PASCAL VOC and MS COCO validate the effectiveness of our method, in which performance gain is up to 21.9% compared to the few-shot baseline.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录