GAN


2023-03-24 更新

NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions

Authors:Mohamad Shahbazi, Evangelos Ntavelis, Alessio Tonioni, Edo Collins, Danda Pani Paudel, Martin Danelljan, Luc Van Gool

Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of 3D neural representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANS. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the superior computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation
PDF

点此查看论文截图

TSI-GAN: Unsupervised Time Series Anomaly Detection using Convolutional Cycle-Consistent Generative Adversarial Networks

Authors:Shyam Sundar Saravanan, Tie Luo, Mao Van Ngo

Anomaly detection is widely used in network intrusion detection, autonomous driving, medical diagnosis, credit card frauds, etc. However, several key challenges remain open, such as lack of ground truth labels, presence of complex temporal patterns, and generalizing over different datasets. This paper proposes TSI-GAN, an unsupervised anomaly detection model for time-series that can learn complex temporal patterns automatically and generalize well, i.e., no need for choosing dataset-specific parameters, making statistical assumptions about underlying data, or changing model architectures. To achieve these goals, we convert each input time-series into a sequence of 2D images using two encoding techniques with the intent of capturing temporal patterns and various types of deviance. Moreover, we design a reconstructive GAN that uses convolutional layers in an encoder-decoder network and employs cycle-consistency loss during training to ensure that inverse mappings are accurate as well. In addition, we also instrument a Hodrick-Prescott filter in post-processing to mitigate false positives. We evaluate TSI-GAN using 250 well-curated and harder-than-usual datasets and compare with 8 state-of-the-art baseline methods. The results demonstrate the superiority of TSI-GAN to all the baselines, offering an overall performance improvement of 13% and 31% over the second-best performer MERLIN and the third-best performer LSTM-AE, respectively.
PDF To appear in the Proceedings of PAKDD 2023 (27th Pacific-Asia Conference on Knowledge Discovery and Data Mining)

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录