NeRF


2023-01-26 更新

RecolorNeRF: Layer Decomposed Radiance Field for Efficient Color Editing of 3D Scenes

Authors:Bingchen Gong, Yuehao Wang, Xiaoguang Han, Qi Dou

Radiance fields have gradually become a main representation of media. Although its appearance editing has been studied, how to achieve view-consistent recoloring in an efficient manner is still under explored. We present RecolorNeRF, a novel user-friendly color editing approach for the neural radiance field. Our key idea is to decompose the scene into a set of pure-colored layers, forming a palette. Thus, color manipulation can be conducted by altering the color components of the palette directly. To support efficient palette-based editing, the color of each layer needs to be as representative as possible. In the end, the problem is formulated as in an optimization formula, where the layers and their blending way are jointly optimized with the NeRF itself. Extensive experiments show that our jointly-optimized layer decomposition can be used against multiple backbones and produce photo-realistic recolored novel-view renderings. We demonstrate that RecolorNeRF outperforms baseline methods both quantitatively and qualitatively for color editing even in complex real-world scenes.
PDF

点此查看论文截图

NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via Novel-View Synthesis

Authors:Allan Zhou, Moo Jin Kim, Lirui Wang, Pete Florence, Chelsea Finn

Expert demonstrations are a rich source of supervision for training visual robotic manipulation policies, but imitation learning methods often require either a large number of demonstrations or expensive online expert supervision to learn reactive closed-loop behaviors. In this work, we introduce SPARTN (Synthetic Perturbations for Augmenting Robot Trajectories via NeRF): a fully-offline data augmentation scheme for improving robot policies that use eye-in-hand cameras. Our approach leverages neural radiance fields (NeRFs) to synthetically inject corrective noise into visual demonstrations, using NeRFs to generate perturbed viewpoints while simultaneously calculating the corrective actions. This requires no additional expert supervision or environment interaction, and distills the geometric information in NeRFs into a real-time reactive RGB-only policy. In a simulated 6-DoF visual grasping benchmark, SPARTN improves success rates by 2.8$\times$ over imitation learning without the corrective augmentations and even outperforms some methods that use online supervision. It additionally closes the gap between RGB-only and RGB-D success rates, eliminating the previous need for depth sensors. In real-world 6-DoF robotic grasping experiments from limited human demonstrations, our method improves absolute success rates by $22.5\%$ on average, including objects that are traditionally challenging for depth-based methods. See video results at \url{https://bland.website/spartn}.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录