I2I Translation


2023-01-18 更新

Delving Deep into Pixel Alignment Feature for Accurate Multi-view Human Mesh Recovery

Authors:Kai Jia, Hongwen Zhang, Liang An, Yebin Liu

Regression-based methods have shown high efficiency and effectiveness for multi-view human mesh recovery. The key components of a typical regressor lie in the feature extraction of input views and the fusion of multi-view features. In this paper, we present Pixel-aligned Feedback Fusion (PaFF) for accurate yet efficient human mesh recovery from multi-view images. PaFF is an iterative regression framework that performs feature extraction and fusion alternately. At each iteration, PaFF extracts pixel-aligned feedback features from each input view according to the reprojection of the current estimation and fuses them together with respect to each vertex of the downsampled mesh. In this way, our regressor can not only perceive the misalignment status of each view from the feedback features but also correct the mesh parameters more effectively based on the feature fusion on mesh vertices. Additionally, our regressor disentangles the global orientation and translation of the body mesh from the estimation of mesh parameters such that the camera parameters of input views can be better utilized in the regression process. The efficacy of our method is validated in the Human3.6M dataset via comprehensive ablation experiments, where PaFF achieves 33.02 MPJPE and brings significant improvements over the previous best solutions by more than 29%. The project page with code and video results can be found at https://kairobo.github.io/PaFF/.
PDF Project Page: https://kairobo.github.io/PaFF/

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录