Few-Shot


2023-01-18 更新

FewSOME: Few Shot Anomaly Detection

Authors:Niamh Belton, Misgina Tsighe Hagos, Aonghus Lawlor, Kathleen M. Curran

Recent years have seen considerable progress in the field of Anomaly Detection but at the cost of increasingly complex training pipelines. Such techniques require large amounts of training data, resulting in computationally expensive algorithms. We propose Few Shot anomaly detection (FewSOME), a deep One-Class Anomaly Detection algorithm with the ability to accurately detect anomalies having trained on ‘few’ examples of the normal class and no examples of the anomalous class. We describe FewSOME to be of low complexity given its low data requirement and short training time. FewSOME is aided by pretrained weights with an architecture based on Siamese Networks. By means of an ablation study, we demonstrate how our proposed loss, ‘Stop Loss’, improves the robustness of FewSOME. Our experiments demonstrate that FewSOME performs at state-of-the-art level on benchmark datasets MNIST, CIFAR-10, F-MNIST and MVTec AD while training on only 30 normal samples, a minute fraction of the data that existing methods are trained on. Most notably, we found that FewSOME outperforms even highly complex models in the setting where only few examples of the normal class exist. Moreover, our extensive experiments show FewSOME to be robust to contaminated datasets. We also report F1 score and Balanced Accuracy in addition to AUC as a benchmark for future techniques to be compared against.
PDF

点此查看论文截图

Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning with Multimodal Models

Authors:Zhiqiu Lin, Samuel Yu, Zhiyi Kuang, Deepak Pathak, Deva Ramana

The ability to quickly learn a new task with minimal instruction - known as few-shot learning - is a central aspect of intelligent agents. Classical few-shot benchmarks make use of few-shot samples from a single modality, but such samples may not be sufficient to characterize an entire concept class. In contrast, humans use cross-modal information to learn new concepts efficiently. In this work, we demonstrate that one can indeed build a better ${\bf visual}$ dog classifier by ${\bf read}$ing about dogs and ${\bf listen}$ing to them bark. To do so, we exploit the fact that recent multimodal foundation models such as CLIP are inherently cross-modal, mapping different modalities to the same representation space. Specifically, we propose a simple cross-modal adaptation approach that learns from few-shot examples spanning different modalities. By repurposing class names as additional one-shot training samples, we achieve SOTA results with an embarrassingly simple linear classifier for vision-language adaptation. Furthermore, we show that our approach can benefit existing methods such as prefix tuning, adapters, and classifier ensembling. Finally, to explore other modalities beyond vision and language, we construct the first (to our knowledge) audiovisual few-shot benchmark and use cross-modal training to improve the performance of both image and audio classification.
PDF Project website: https://linzhiqiu.github.io/papers/cross_modal/

点此查看论文截图

PromptShots at the FinNLP-2022 ERAI Tasks: Pairwise Comparison and Unsupervised Ranking

Authors:Peratham Wiriyathammabhum

This report describes our PromptShots submissions to a shared task on Evaluating the Rationales of Amateur Investors (ERAI). We participated in both pairwise comparison and unsupervised ranking tasks. For pairwise comparison, we employed instruction-based models based on T5-small and OpenAI InstructGPT language models. Surprisingly, we observed OpenAI InstructGPT language model few-shot trained on Chinese data works best in our submissions, ranking 3rd on the maximal loss (ML) pairwise accuracy. This model works better than training on the Google translated English data by a large margin, where the English few-shot trained InstructGPT model even performs worse than an instruction-based T5-small model finetuned on the English data. However, all instruction-based submissions do not perform well on the maximal potential profit (MPP) pairwise accuracy where there are more data and learning signals. The Chinese few-shot trained InstructGPT model still performs best in our setting. For unsupervised ranking, we utilized many language models, including many financial-specific ones, and Bayesian lexicons unsupervised-learned on both Chinese and English words using a method-of-moments estimator. All our submissions rank best in the MPP ranking, from 1st to 3rd. However, they all do not perform well for ML scoring. Therefore, both MPP and ML scores need different treatments since we treated MPP and ML using the same formula. Our only difference is the treatment of market sentiment lexicons.
PDF EMNLP workshop 2022 SharedTask report. FinNLP 2022. 1st placed in MPP unsupervised ranking. 3rd placed in ML pairwise ranking

点此查看论文截图

Disambiguation of One-Shot Visual Classification Tasks: A Simplex-Based Approach

Authors:Yassir Bendou, Lucas Drumetz, Vincent Gripon, Giulia Lioi, Bastien Pasdeloup

The field of visual few-shot classification aims at transferring the state-of-the-art performance of deep learning visual systems onto tasks where only a very limited number of training samples are available. The main solution consists in training a feature extractor using a large and diverse dataset to be applied to the considered few-shot task. Thanks to the encoded priors in the feature extractors, classification tasks with as little as one example (or “shot’’) for each class can be solved with high accuracy, even when the shots display individual features not representative of their classes. Yet, the problem becomes more complicated when some of the given shots display multiple objects. In this paper, we present a strategy which aims at detecting the presence of multiple and previously unseen objects in a given shot. This methodology is based on identifying the corners of a simplex in a high dimensional space. We introduce an optimization routine and showcase its ability to successfully detect multiple (previously unseen) objects in raw images. Then, we introduce a downstream classifier meant to exploit the presence of multiple objects to improve the performance of few-shot classification, in the case of extreme settings where only one shot is given for its class. Using standard benchmarks of the field, we show the ability of the proposed method to slightly, yet statistically significantly, improve accuracy in these settings.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录