Few-Shot


2022-12-13 更新

MIMO Is All You Need : A Strong Multi-In-Multi-Out Baseline for Video Prediction

Authors:Shuliang Ning, Mengcheng Lan, Yanran Li, Chaofeng Chen, Qian Chen, Xunlai Chen, Xiaoguang Han, Shuguang Cui

The mainstream of the existing approaches for video prediction builds up their models based on a Single-In-Single-Out (SISO) architecture, which takes the current frame as input to predict the next frame in a recursive manner. This way often leads to severe performance degradation when they try to extrapolate a longer period of future, thus limiting the practical use of the prediction model. Alternatively, a Multi-In-Multi-Out (MIMO) architecture that outputs all the future frames at one shot naturally breaks the recursive manner and therefore prevents error accumulation. However, only a few MIMO models for video prediction are proposed and they only achieve inferior performance due to the date. The real strength of the MIMO model in this area is not well noticed and is largely under-explored. Motivated by that, we conduct a comprehensive investigation in this paper to thoroughly exploit how far a simple MIMO architecture can go. Surprisingly, our empirical studies reveal that a simple MIMO model can outperform the state-of-the-art work with a large margin much more than expected, especially in dealing with longterm error accumulation. After exploring a number of ways and designs, we propose a new MIMO architecture based on extending the pure Transformer with local spatio-temporal blocks and a new multi-output decoder, namely MIMO-VP, to establish a new standard in video prediction. We evaluate our model in four highly competitive benchmarks (Moving MNIST, Human3.6M, Weather, KITTI). Extensive experiments show that our model wins 1st place on all the benchmarks with remarkable performance gains and surpasses the best SISO model in all aspects including efficiency, quantity, and quality. We believe our model can serve as a new baseline to facilitate the future research of video prediction tasks. The code will be released.
PDF

点此查看论文截图

Frozen CLIP Model is An Efficient Point Cloud Backbone

Authors:Xiaoshui Huang, Sheng Li, Wentao Qu, Tong He, Yifan Zuo, Wanli Ouyang

The pretraining-finetuning paradigm has demonstrated great success in NLP and 2D image fields because of the high-quality representation ability and transferability of their pretrained models. However, pretraining such a strong model is difficult in the 3D point cloud field since the training data is limited and point cloud collection is expensive. This paper introduces Efficient Point Cloud Learning (EPCL), an effective and efficient point cloud learner for directly training high-quality point cloud models with a frozen CLIP model. Our EPCL connects the 2D and 3D modalities by semantically aligning the 2D features and point cloud features without paired 2D-3D data. Specifically, the input point cloud is divided into a sequence of tokens and directly fed into the frozen CLIP model to learn point cloud representation. Furthermore, we design a task token to narrow the gap between 2D images and 3D point clouds. Comprehensive experiments on 3D detection, semantic segmentation, classification and few-shot learning demonstrate that the 2D CLIP model can be an efficient point cloud backbone and our method achieves state-of-the-art accuracy on both real-world and synthetic downstream tasks. Code will be available.
PDF Technical report

点此查看论文截图

DiffAlign : Few-shot learning using diffusion based synthesis and alignment

Authors:Aniket Roy, Anshul Shah, Ketul Shah, Anirban Roy, Rama Chellappa

We address the problem of few-shot classification where the goal is to learn a classifier from a limited set of samples. While data-driven learning is shown to be effective in various applications, learning from less data still remains challenging. To address this challenge, existing approaches consider various data augmentation techniques for increasing the number of training samples. Pseudo-labeling is commonly used in a few-shot setup, where approximate labels are estimated for a large set of unlabeled images. We propose DiffAlign which focuses on generating images from class labels. Specifically, we leverage the recent success of the generative models (e.g., DALL-E and diffusion models) that can generate realistic images from texts. However, naive learning on synthetic images is not adequate due to the domain gap between real and synthetic images. Thus, we employ a maximum mean discrepancy (MMD) loss to align the synthetic images to the real images minimizing the domain gap. We evaluate our method on the standard few-shot classification benchmarks: CIFAR-FS, FC100, miniImageNet, tieredImageNet and a cross-domain few-shot classification benchmark: miniImageNet to CUB. The proposed approach significantly outperforms the stateof-the-art in both 5-shot and 1-shot setups on these benchmarks. Our approach is also shown to be effective in the zero-shot classification setup
PDF

点此查看论文截图

Resolving Semantic Confusions for Improved Zero-Shot Detection

Authors:Sandipan Sarma, Sushil Kumar, Arijit Sur

Zero-shot detection (ZSD) is a challenging task where we aim to recognize and localize objects simultaneously, even when our model has not been trained with visual samples of a few target (“unseen”) classes. Recently, methods employing generative models like GANs have shown some of the best results, where unseen-class samples are generated based on their semantics by a GAN trained on seen-class data, enabling vanilla object detectors to recognize unseen objects. However, the problem of semantic confusion still remains, where the model is sometimes unable to distinguish between semantically-similar classes. In this work, we propose to train a generative model incorporating a triplet loss that acknowledges the degree of dissimilarity between classes and reflects them in the generated samples. Moreover, a cyclic-consistency loss is also enforced to ensure that generated visual samples of a class highly correspond to their own semantics. Extensive experiments on two benchmark ZSD datasets - MSCOCO and PASCAL-VOC - demonstrate significant gains over the current ZSD methods, reducing semantic confusion and improving detection for the unseen classes.
PDF Accepted to BMVC 2022 (Oral). 15 pages, 5 figures. Project page: https://github.com/sandipan211/ZSD-SC-Resolver

点此查看论文截图

Multimodal Prototype-Enhanced Network for Few-Shot Action Recognition

Authors:Xinzhe Ni, Hao Wen, Yong Liu, Yatai Ji, Yujiu Yang

Current methods for few-shot action recognition mainly fall into the metric learning framework following ProtoNet. However, they either ignore the effect of representative prototypes or fail to enhance the prototypes with multimodal information adequately. In this work, we propose a novel Multimodal Prototype-Enhanced Network (MORN) to use the semantic information of label texts as multimodal information to enhance prototypes, including two modality flows. A CLIP visual encoder is introduced in the visual flow, and visual prototypes are computed by the Temporal-Relational CrossTransformer (TRX) module. A frozen CLIP text encoder is introduced in the text flow, and a semantic-enhanced module is used to enhance text features. After inflating, text prototypes are obtained. The final multimodal prototypes are then computed by a multimodal prototype-enhanced module. Besides, there exist no evaluation metrics to evaluate the quality of prototypes. To the best of our knowledge, we are the first to propose a prototype evaluation metric called Prototype Similarity Difference (PRIDE), which is used to evaluate the performance of prototypes in discriminating different categories. We conduct extensive experiments on four popular datasets. MORN achieves state-of-the-art results on HMDB51, UCF101, Kinetics and SSv2. MORN also performs well on PRIDE, and we explore the correlation between PRIDE and accuracy.
PDF

点此查看论文截图

Diff-Font: Diffusion Model for Robust One-Shot Font Generation

Authors:Haibin He, Xinyuan Chen, Chaoyue Wang, Juhua Liu, Bo Du, Dacheng Tao, Yu Qiao

Font generation is a difficult and time-consuming task, especially in those languages using ideograms that have complicated structures with a large number of characters, such as Chinese. To solve this problem, few-shot font generation and even one-shot font generation have attracted a lot of attention. However, most existing font generation methods may still suffer from (i) large cross-font gap challenge; (ii) subtle cross-font variation problem; and (iii) incorrect generation of complicated characters. In this paper, we propose a novel one-shot font generation method based on a diffusion model, named Diff-Font, which can be stably trained on large datasets. The proposed model aims to generate the entire font library by giving only one sample as the reference. Specifically, a large stroke-wise dataset is constructed, and a stroke-wise diffusion model is proposed to preserve the structure and the completion of each generated character. To our best knowledge, the proposed Diff-Font is the first work that developed diffusion models to handle the font generation task. The well-trained Diff-Font is not only robust to font gap and font variation, but also achieved promising performance on difficult character generation. Compared to previous font generation methods, our model reaches state-of-the-art performance both qualitatively and quantitatively.
PDF

点此查看论文截图

MSI: Maximize Support-Set Information for Few-Shot Segmentation

Authors:Seonghyeon Moon, Samuel S. Sohn, Honglu Zhou, Sejong Yoon, Vladimir Pavlovic, Muhammad Haris Khan, Mubbasir Kapadia

FSS(Few-shot segmentation)~aims to segment a target class with a small number of labeled images (support Set). To extract information relevant to target class, a dominant approach in best performing FSS baselines removes background features using support mask. We observe that this support mask presents an information bottleneck in several challenging FSS cases e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary source of features in generating super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS baselines. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves the performance by visible margins and allows faster convergence. Our codes and models will be publicly released.
PDF

点此查看论文截图

Genie: Show Me the Data for Quantization

Authors:Yongkweon Jeon, Chungman Lee, Ho-young Kim

Zero-shot quantization is a promising approach for developing lightweight deep neural networks when data is inaccessible owing to various reasons, including cost and issues related to privacy. By utilizing the learned parameters (statistics) of FP32-pre-trained models, zero-shot quantization schemes focus on generating synthetic data by minimizing the distance between the learned parameters ($\mu$ and $\sigma$) and distributions of intermediate activations. Subsequently, they distill knowledge from the pre-trained model (\textit{teacher}) to the quantized model (\textit{student}) such that the quantized model can be optimized with the synthetic dataset. In general, zero-shot quantization comprises two major elements: synthesizing datasets and quantizing models. However, thus far, zero-shot quantization has primarily been discussed in the context of quantization-aware training methods, which require task-specific losses and long-term optimization as much as retraining. We thus introduce a post-training quantization scheme for zero-shot quantization that produces high-quality quantized networks within a few hours on even half an hour. Furthermore, we propose a framework called \genie~that generates data suited for post-training quantization. With the data synthesized by \genie, we can produce high-quality quantized models without real datasets, which is comparable to few-shot quantization. We also propose a post-training quantization algorithm to enhance the performance of quantized models. By combining them, we can bridge the gap between zero-shot and few-shot quantization while significantly improving the quantization performance compared to that of existing approaches. In other words, we can obtain a unique state-of-the-art zero-shot quantization approach.
PDF 13 pages

点此查看论文截图

Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification

Authors:Zhen Tan, Song Wang, Kaize Ding, Jundong Li, Huan Liu

Few-shot node classification is tasked to provide accurate predictions for nodes from novel classes with only few representative labeled nodes. This problem has drawn tremendous attention for its projection to prevailing real-world applications, such as product categorization for newly added commodity categories on an E-commerce platform with scarce records or diagnoses for rare diseases on a patient similarity graph. To tackle such challenging label scarcity issues in the non-Euclidean graph domain, meta-learning has become a successful and predominant paradigm. More recently, inspired by the development of graph self-supervised learning, transferring pretrained node embeddings for few-shot node classification could be a promising alternative to meta-learning but remains unexposed. In this work, we empirically demonstrate the potential of an alternative framework, \textit{Transductive Linear Probing}, that transfers pretrained node embeddings, which are learned from graph contrastive learning methods. We further extend the setting of few-shot node classification from standard fully supervised to a more realistic self-supervised setting, where meta-learning methods cannot be easily deployed due to the shortage of supervision from training classes. Surprisingly, even without any ground-truth labels, transductive linear probing with self-supervised graph contrastive pretraining can outperform the state-of-the-art fully supervised meta-learning based methods under the same protocol. We hope this work can shed new light on few-shot node classification problems and foster future research on learning from scarcely labeled instances on graphs.
PDF Accepted to the First Learning on Graph Conference (LoG 2022)

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录