NeRF


2022-12-09 更新

EditableNeRF: Editing Topologically Varying Neural Radiance Fields by Key Points

Authors:Chengwei Zheng, Wenbin Lin, Feng Xu

Neural radiance fields (NeRF) achieve highly photo-realistic novel-view synthesis, but it’s a challenging problem to edit the scenes modeled by NeRF-based methods, especially for dynamic scenes. We propose editable neural radiance fields that enable end-users to easily edit dynamic scenes and even support topological changes. Input with an image sequence from a single camera, our network is trained fully automatically and models topologically varying dynamics using our picked-out surface key points. Then end-users can edit the scene by easily dragging the key points to desired new positions. To achieve this, we propose a scene analysis method to detect and initialize key points by considering the dynamics in the scene, and a weighted key points strategy to model topologically varying dynamics by joint key points and weights optimization. Our method supports intuitive multi-dimensional (up to 3D) editing and can generate novel scenes that are unseen in the input sequence. Experiments demonstrate that our method achieves high-quality editing on various dynamic scenes and outperforms the state-of-the-art. We will release our code and captured data.
PDF

点此查看论文截图

Few-View Object Reconstruction with Unknown Categories and Camera Poses

Authors:Hanwen Jiang, Zhenyu Jiang, Kristen Grauman, Yuke Zhu

While object reconstruction has made great strides in recent years, current methods typically require densely captured images and/or known camera poses, and generalize poorly to novel object categories. To step toward object reconstruction in the wild, this work explores reconstructing general real-world objects from a few images without known camera poses or object categories. The crux of our work is solving two fundamental 3D vision problems — shape reconstruction and pose estimation — in a unified approach. Our approach captures the synergies of these two problems: reliable camera pose estimation gives rise to accurate shape reconstruction, and the accurate reconstruction, in turn, induces robust correspondence between different views and facilitates pose estimation. Our method FORGE predicts 3D features from each view and leverages them in conjunction with the input images to establish cross-view correspondence for estimating relative camera poses. The 3D features are then transformed by the estimated poses into a shared space and are fused into a neural radiance field. The reconstruction results are rendered by volume rendering techniques, enabling us to train the model without 3D shape ground-truth. Our experiments show that FORGE reliably reconstructs objects from five views. Our pose estimation method outperforms existing ones by a large margin. The reconstruction results under predicted poses are comparable to the ones using ground-truth poses. The performance on novel testing categories matches the results on categories seen during training. Project page: https://ut-austin-rpl.github.io/FORGE/
PDF

点此查看论文截图

NeRFEditor: Differentiable Style Decomposition for Full 3D Scene Editing

Authors:Chunyi Sun, Yanbin Liu, Junlin Han, Stephen Gould

We present NeRFEditor, an efficient learning framework for 3D scene editing, which takes a video captured over 360{\deg} as input and outputs a high-quality, identity-preserving stylized 3D scene. Our method supports diverse types of editing such as guided by reference images, text prompts, and user interactions. We achieve this by encouraging a pre-trained StyleGAN model and a NeRF model to learn from each other mutually. Specifically, we use a NeRF model to generate numerous image-angle pairs to train an adjustor, which can adjust the StyleGAN latent code to generate high-fidelity stylized images for any given angle. To extrapolate editing to GAN out-of-domain views, we devise another module that is trained in a self-supervised learning manner. This module maps novel-view images to the hidden space of StyleGAN that allows StyleGAN to generate stylized images on novel views. These two modules together produce guided images in 360{\deg}views to finetune a NeRF to make stylization effects, where a stable fine-tuning strategy is proposed to achieve this. Experiments show that NeRFEditor outperforms prior work on benchmark and real-world scenes with better editability, fidelity, and identity preservation.
PDF Project page: https://chuny1.github.io/NeRFEditor/nerfeditor.html

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录