I2I Translation


2022-11-30 更新

Clustering-Based Representation Learning through Output Translation and Its Application to Remote—Sensing Images

Authors:Qinglin Li, Bin Li, Jonathan M Garibaldi, Guoping Qiu

In supervised deep learning, learning good representations for remote—sensing images (RSI) relies on manual annotations. However, in the area of remote sensing, it is hard to obtain huge amounts of labeled data. Recently, self—supervised learning shows its outstanding capability to learn representations of images, especially the methods of instance discrimination. Comparing methods of instance discrimination, clustering—based methods not only view the transformations of the same image as ``positive” samples but also similar images. In this paper, we propose a new clustering-based method for representation learning. We first introduce a quantity to measure representations’ discriminativeness and from which we show that even distribution requires the most discriminative representations. This provides a theoretical insight into why evenly distributing the images works well. We notice that only the even distributions that preserve representations’ neighborhood relations are desirable. Therefore, we develop an algorithm that translates the outputs of a neural network to achieve the goal of evenly distributing the samples while preserving outputs’ neighborhood relations. Extensive experiments have demonstrated that our method can learn representations that are as good as or better than the state of the art approaches, and that our method performs computationally efficiently and robustly on various RSI datasets.
PDF 14 pages

点此查看论文截图

Smooth image-to-image translations with latent space interpolations

Authors:Yahui Liu, Enver Sangineto, Yajing Chen, Linchao Bao, Haoxian Zhang, Nicu Sebe, Bruno Lepri, Marco De Nadai

Multi-domain image-to-image (I2I) translations can transform a source image according to the style of a target domain. One important, desired characteristic of these transformations, is their graduality, which corresponds to a smooth change between the source and the target image when their respective latent-space representations are linearly interpolated. However, state-of-the-art methods usually perform poorly when evaluated using inter-domain interpolations, often producing abrupt changes in the appearance or non-realistic intermediate images. In this paper, we argue that one of the main reasons behind this problem is the lack of sufficient inter-domain training data and we propose two different regularization methods to alleviate this issue: a new shrinkage loss, which compacts the latent space, and a Mixup data-augmentation strategy, which flattens the style representations between domains. We also propose a new metric to quantitatively evaluate the degree of the interpolation smoothness, an aspect which is not sufficiently covered by the existing I2I translation metrics. Using both our proposed metric and standard evaluation protocols, we show that our regularization techniques can improve the state-of-the-art multi-domain I2I translations by a large margin. Our code will be made publicly available upon the acceptance of this article.
PDF

点此查看论文截图

UVCGAN: UNet Vision Transformer cycle-consistent GAN for unpaired image-to-image translation

Authors:Dmitrii Torbunov, Yi Huang, Haiwang Yu, Jin Huang, Shinjae Yoo, Meifeng Lin, Brett Viren, Yihui Ren

Unpaired image-to-image translation has broad applications in art, design, and scientific simulations. One early breakthrough was CycleGAN that emphasizes one-to-one mappings between two unpaired image domains via generative-adversarial networks (GAN) coupled with the cycle-consistency constraint, while more recent works promote one-to-many mapping to boost diversity of the translated images. Motivated by scientific simulation and one-to-one needs, this work revisits the classic CycleGAN framework and boosts its performance to outperform more contemporary models without relaxing the cycle-consistency constraint. To achieve this, we equip the generator with a Vision Transformer (ViT) and employ necessary training and regularization techniques. Compared to previous best-performing models, our model performs better and retains a strong correlation between the original and translated image. An accompanying ablation study shows that both the gradient penalty and self-supervised pre-training are crucial to the improvement. To promote reproducibility and open science, the source code, hyperparameter configurations, and pre-trained model are available at https://github.com/LS4GAN/uvcgan.
PDF Accepted by WACV2023, contains 5 pages, 2 figures, 2 tables

点此查看论文截图

Distill the Image to Nowhere: Inversion Knowledge Distillation for Multimodal Machine Translation

Authors:Ru Peng, Yawen Zeng, Junbo Zhao

Past works on multimodal machine translation (MMT) elevate bilingual setup by incorporating additional aligned vision information. However, an image-must requirement of the multimodal dataset largely hinders MMT’s development — namely that it demands an aligned form of [image, source text, target text]. This limitation is generally troublesome during the inference phase especially when the aligned image is not provided as in the normal NMT setup. Thus, in this work, we introduce IKD-MMT, a novel MMT framework to support the image-free inference phase via an inversion knowledge distillation scheme. In particular, a multimodal feature generator is executed with a knowledge distillation module, which directly generates the multimodal feature from (only) source texts as the input. While there have been a few prior works entertaining the possibility to support image-free inference for machine translation, their performances have yet to rival the image-must translation. In our experiments, we identify our method as the first image-free approach to comprehensively rival or even surpass (almost) all image-must frameworks, and achieved the state-of-the-art result on the often-used Multi30k benchmark. Our code and data are available at: https://github.com/pengr/IKD-mmt/tree/master..
PDF Long paper accepted by EMNLP2022 main conference

点此查看论文截图

Improving End-to-End Text Image Translation From the Auxiliary Text Translation Task

Authors:Cong Ma, Yaping Zhang, Mei Tu, Xu Han, Linghui Wu, Yang Zhao, Yu Zhou

End-to-end text image translation (TIT), which aims at translating the source language embedded in images to the target language, has attracted intensive attention in recent research. However, data sparsity limits the performance of end-to-end text image translation. Multi-task learning is a non-trivial way to alleviate this problem via exploring knowledge from complementary related tasks. In this paper, we propose a novel text translation enhanced text image translation, which trains the end-to-end model with text translation as an auxiliary task. By sharing model parameters and multi-task training, our model is able to take full advantage of easily-available large-scale text parallel corpus. Extensive experimental results show our proposed method outperforms existing end-to-end methods, and the joint multi-task learning with both text translation and recognition tasks achieves better results, proving translation and recognition auxiliary tasks are complementary.
PDF Accepted at the 26TH International Conference on Pattern Recognition (ICPR 2022)

点此查看论文截图

Diffusion-based Image Translation using Disentangled Style and Content Representation

Authors:Gihyun Kwon, Jong Chul Ye

Diffusion-based image translation guided by semantic texts or a single target image has enabled flexible style transfer which is not limited to the specific domains. Unfortunately, due to the stochastic nature of diffusion models, it is often difficult to maintain the original content of the image during the reverse diffusion. To address this, here we present a novel diffusion-based unsupervised image translation method using disentangled style and content representation. Specifically, inspired by the splicing Vision Transformer, we extract intermediate keys of multihead self attention layer from ViT model and used them as the content preservation loss. Then, an image guided style transfer is performed by matching the [CLS] classification token from the denoised samples and target image, whereas additional CLIP loss is used for the text-driven style transfer. To further accelerate the semantic change during the reverse diffusion, we also propose a novel semantic divergence loss and resampling strategy. Our experimental results show that the proposed method outperforms state-of-the-art baseline models in both text-guided and image-guided translation tasks.
PDF

点此查看论文截图

MIDMs: Matching Interleaved Diffusion Models for Exemplar-based Image Translation

Authors:Junyoung Seo, Gyuseong Lee, Seokju Cho, Jiyoung Lee, Seungryong Kim

We present a novel method for exemplar-based image translation, called matching interleaved diffusion models (MIDMs). Most existing methods for this task were formulated as GAN-based matching-then-generation framework. However, in this framework, matching errors induced by the difficulty of semantic matching across cross-domain, e.g., sketch and photo, can be easily propagated to the generation step, which in turn leads to degenerated results. Motivated by the recent success of diffusion models overcoming the shortcomings of GANs, we incorporate the diffusion models to overcome these limitations. Specifically, we formulate a diffusion-based matching-and-generation framework that interleaves cross-domain matching and diffusion steps in the latent space by iteratively feeding the intermediate warp into the noising process and denoising it to generate a translated image. In addition, to improve the reliability of the diffusion process, we design a confidence-aware process using cycle-consistency to consider only confident regions during translation. Experimental results show that our MIDMs generate more plausible images than state-of-the-art methods.
PDF

点此查看论文截图

EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations

Authors:Min Zhao, Fan Bao, Chongxuan Li, Jun Zhu

Score-based diffusion models (SBDMs) have achieved the SOTA FID results in unpaired image-to-image translation (I2I). However, we notice that existing methods totally ignore the training data in the source domain, leading to sub-optimal solutions for unpaired I2I. To this end, we propose energy-guided stochastic differential equations (EGSDE) that employs an energy function pretrained on both the source and target domains to guide the inference process of a pretrained SDE for realistic and faithful unpaired I2I. Building upon two feature extractors, we carefully design the energy function such that it encourages the transferred image to preserve the domain-independent features and discard domain-specific ones. Further, we provide an alternative explanation of the EGSDE as a product of experts, where each of the three experts (corresponding to the SDE and two feature extractors) solely contributes to faithfulness or realism. Empirically, we compare EGSDE to a large family of baselines on three widely-adopted unpaired I2I tasks under four metrics. EGSDE not only consistently outperforms existing SBDMs-based methods in almost all settings but also achieves the SOTA realism results without harming the faithful performance. Furthermore, EGSDE allows for flexible trade-offs between realism and faithfulness and we improve the realism results further (e.g., FID of 51.04 in Cat to Dog and FID of 50.43 in Wild to Dog on AFHQ) by tuning hyper-parameters. The code is available at https://github.com/ML-GSAI/EGSDE.
PDF NIPS 2022

点此查看论文截图

Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation

Authors:Hao Tang, Philip H. S. Torr, Nicu Sebe

We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling & channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN.
PDF Accepted to TPAMI, an extended version of a paper published in CVPR2019. arXiv admin note: substantial text overlap with arXiv:1904.06807

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录