GAN


2022-11-29 更新

High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization

Authors:Jiaxin Xie, Hao Ouyang, Jingtan Piao, Chenyang Lei, Qifeng Chen

We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views while preserving specific details of the input image. High-fidelity 3D GAN inversion is inherently challenging due to the geometry-texture trade-off in 3D inversion, where overfitting to a single view input image often damages the estimated geometry during the latent optimization. To solve this challenge, we propose a novel pipeline that builds on the pseudo-multi-view estimation with visibility analysis. We keep the original textures for the visible parts and utilize generative priors for the occluded parts. Extensive experiments show that our approach achieves advantageous reconstruction and novel view synthesis quality over state-of-the-art methods, even for images with out-of-distribution textures. The proposed pipeline also enables image attribute editing with the inverted latent code and 3D-aware texture modification. Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
PDF Project website: https://kenouyang.github.io/HFGI3D/index.html

点此查看论文截图

DigGAN: Discriminator gradIent Gap Regularization for GAN Training with Limited Data

Authors:Tiantian Fang, Ruoyu Sun, Alex Schwing

Generative adversarial nets (GANs) have been remarkably successful at learning to sample from distributions specified by a given dataset, particularly if the given dataset is reasonably large compared to its dimensionality. However, given limited data, classical GANs have struggled, and strategies like output-regularization, data-augmentation, use of pre-trained models and pruning have been shown to lead to improvements. Notably, the applicability of these strategies is 1) often constrained to particular settings, e.g., availability of a pretrained GAN; or 2) increases training time, e.g., when using pruning. In contrast, we propose a Discriminator gradIent Gap regularized GAN (DigGAN) formulation which can be added to any existing GAN. DigGAN augments existing GANs by encouraging to narrow the gap between the norm of the gradient of a discriminator’s prediction w.r.t.\ real images and w.r.t.\ the generated samples. We observe this formulation to avoid bad attractors within the GAN loss landscape, and we find DigGAN to significantly improve the results of GAN training when limited data is available. Code is available at \url{https://github.com/AilsaF/DigGAN}.
PDF Accepted to NeurIPS 2022

点此查看论文截图

Target-Free Text-guided Image Manipulation

Authors:Wan-Cyuan Fan, Cheng-Fu Yang, Chiao-An Yang, Yu-Chiang Frank Wang

We tackle the problem of target-free text-guided image manipulation, which requires one to modify the input reference image based on the given text instruction, while no ground truth target image is observed during training. To address this challenging task, we propose a Cyclic-Manipulation GAN (cManiGAN) in this paper, which is able to realize where and how to edit the image regions of interest. Specifically, the image editor in cManiGAN learns to identify and complete the input image, while cross-modal interpreter and reasoner are deployed to verify the semantic correctness of the output image based on the input instruction. While the former utilizes factual/counterfactual description learning for authenticating the image semantics, the latter predicts the “undo” instruction and provides pixel-level supervision for the training of cManiGAN. With such operational cycle-consistency, our cManiGAN can be trained in the above weakly supervised setting. We conduct extensive experiments on the datasets of CLEVR and COCO, and the effectiveness and generalizability of our proposed method can be successfully verified. Project page: https://sites.google.com/view/wancyuanfan/projects/cmanigan.
PDF 9 pages

点此查看论文截图

Traditional Classification Neural Networks are Good Generators: They are Competitive with DDPMs and GANs

Authors:Guangrun Wang, Philip H. S. Torr

Classifiers and generators have long been separated. We break down this separation and showcase that conventional neural network classifiers can generate high-quality images of a large number of categories, being comparable to the state-of-the-art generative models (e.g., DDPMs and GANs). We achieve this by computing the partial derivative of the classification loss function with respect to the input to optimize the input to produce an image. Since it is widely known that directly optimizing the inputs is similar to targeted adversarial attacks incapable of generating human-meaningful images, we propose a mask-based stochastic reconstruction module to make the gradients semantic-aware to synthesize plausible images. We further propose a progressive-resolution technique to guarantee fidelity, which produces photorealistic images. Furthermore, we introduce a distance metric loss and a non-trivial distribution loss to ensure classification neural networks can synthesize diverse and high-fidelity images. Using traditional neural network classifiers, we can generate good-quality images of 256$\times$256 resolution on ImageNet. Intriguingly, our method is also applicable to text-to-image generation by regarding image-text foundation models as generalized classifiers. Proving that classifiers have learned the data distribution and are ready for image generation has far-reaching implications, for classifiers are much easier to train than generative models like DDPMs and GANs. We don’t even need to train classification models because tons of public ones are available for download. Also, this holds great potential for the interpretability and robustness of classifiers.
PDF This paper has 29 pages with 22 figures, including rich supplementary information

点此查看论文截图

AvatarGen: A 3D Generative Model for Animatable Human Avatars

Authors:Jianfeng Zhang, Zihang Jiang, Dingdong Yang, Hongyi Xu, Yichun Shi, Guoxian Song, Zhongcong Xu, Xinchao Wang, Jiashi Feng

Unsupervised generation of 3D-aware clothed humans with various appearances and controllable geometries is important for creating virtual human avatars and other AR/VR applications. Existing methods are either limited to rigid object modeling, or not generative and thus unable to generate high-quality virtual humans and animate them. In this work, we propose AvatarGen, the first method that enables not only geometry-aware clothed human synthesis with high-fidelity appearances but also disentangled human animation controllability, while only requiring 2D images for training. Specifically, we decompose the generative 3D human synthesis into pose-guided mapping and canonical representation with predefined human pose and shape, such that the canonical representation can be explicitly driven to different poses and shapes with the guidance of a 3D parametric human model SMPL. AvatarGen further introduces a deformation network to learn non-rigid deformations for modeling fine-grained geometric details and pose-dependent dynamics. To improve the geometry quality of the generated human avatars, it leverages the signed distance field as geometric proxy, which allows more direct regularization from the 3D geometric priors of SMPL. Benefiting from these designs, our method can generate animatable 3D human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs. Furthermore, it is competent for many applications, e.g., single-view reconstruction, re-animation, and text-guided synthesis/editing. Code and pre-trained model will be available at http://jeff95.me/projects/avatargen.html.
PDF First two authors contributed equally. Our code and models will be available at http://jeff95.me/projects/avatargen.html. arXiv admin note: substantial text overlap with arXiv:2208.00561

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录