I2I Translation


2022-11-18 更新

Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

Authors:Nick Lawrence, Mingren Shen, Ruiqi Yin, Cloris Feng, Dane Morgan

The use of accurate scanning transmission electron microscopy (STEM) image simulation methods require large computation times that can make their use infeasible for the simulation of many images. Other simulation methods based on linear imaging models, such as the convolution method, are much faster but are too inaccurate to be used in application. In this paper, we explore deep learning models that attempt to translate a STEM image produced by the convolution method to a prediction of the high accuracy multislice image. We then compare our results to those of regression methods. We find that using the deep learning model Generative Adversarial Network (GAN) provides us with the best results and performs at a similar accuracy level to previous regression models on the same dataset. Codes and data for this project can be found in this GitHub repository, https://github.com/uw-cmg/GAN-STEM-Conv2MultiSlice.
PDF

点此查看论文截图

Squeeze flow of micro-droplets: convolutional neural network with trainable and tunable refinement

Authors:Aryan Mehboudi, Shrawan Singhal, S. V. Sreenivasan

We propose a platform based on neural networks to solve the image-to-image translation problem in the context of squeeze flow of micro-droplets. In the first part of this paper, we present the governing partial differential equations to lay out the underlying physics of the problem. We also discuss our developed Python package, sqflow, which can potentially serve as free, flexible, and scalable standardized benchmarks in the fields of machine learning and computer vision. In the second part of this paper, we introduce a residual convolutional neural network to solve the corresponding inverse problem: to translate a high-resolution (HR) imprint image with a specific liquid film thickness to a low-resolution (LR) droplet pattern image capable of producing the given imprint image for an appropriate spread time of droplets. We propose a neural network architecture that learns to systematically tune the refinement level of its residual convolutional blocks by using the function approximators that are trained to map a given input parameter (film thickness) to an appropriate refinement level indicator. We use multiple stacks of convolutional layers the output of which is translated according to the refinement level indicators provided by the directly-connected function approximators. Together with a non-linear activation function, such a translation mechanism enables the HR imprint image to be refined sequentially in multiple steps until the target LR droplet pattern image is revealed. The proposed platform can be potentially applied to data compression and data encryption. The developed package and datasets are publicly available on GitHub at https://github.com/sqflow/sqflow.
PDF 27 pages, 18 figures

点此查看论文截图

Chronic pain patient narratives allow for the estimation of current pain intensity

Authors:Diogo A. P. Nunes, Joana Ferreira-Gomes, Daniela Oliveira, Carlos Vaz, Sofia Pimenta, Fani Neto, David Martins de Matos

Chronic pain is a multi-dimensional experience, and pain intensity plays an important part, impacting the patients emotional balance, psychology, and behaviour. Standard self-reporting tools, such as the Visual Analogue Scale for pain, fail to capture this burden. Moreover, this type of tools is susceptible to a degree of subjectivity, dependent on the patients clear understanding of how to use it, social biases, and their ability to translate a complex experience to a scale. To overcome these and other self-reporting challenges, pain intensity estimation has been previously studied based on facial expressions, electroencephalograms, brain imaging, and autonomic features. However, to the best of our knowledge, it has never been attempted to base this estimation on the patient narratives of the personal experience of chronic pain, which is what we propose in this work. Indeed, in the clinical assessment and management of chronic pain, verbal communication is essential to convey information to physicians that would otherwise not be easily accessible through standard reporting tools, since language, sociocultural, and psychosocial variables are intertwined. We show that language features from patient narratives indeed convey information relevant for pain intensity estimation, and that our computational models can take advantage of that. Specifically, our results show that patients with mild pain focus more on the use of verbs, whilst moderate and severe pain patients focus on adverbs, and nouns and adjectives, respectively, and that these differences allow for the distinction between these three pain classes.
PDF 29 pages, 6 figures, 7 tables

点此查看论文截图

Dynamic-Pix2Pix: Noise Injected cGAN for Modeling Input and Target Domain Joint Distributions with Limited Training Data

Authors:Mohammadreza Naderi, Nader Karimi, Ali Emami, Shahram Shirani, Shadrokh Samavi

Learning to translate images from a source to a target domain with applications such as converting simple line drawing to oil painting has attracted significant attention. The quality of translated images is directly related to two crucial issues. First, the consistency of the output distribution with that of the target is essential. Second, the generated output should have a high correlation with the input. Conditional Generative Adversarial Networks, cGANs, are the most common models for translating images. The performance of a cGAN drops when we use a limited training dataset. In this work, we increase the Pix2Pix (a form of cGAN) target distribution modeling ability with the help of dynamic neural network theory. Our model has two learning cycles. The model learns the correlation between input and ground truth in the first cycle. Then, the model’s architecture is refined in the second cycle to learn the target distribution from noise input. These processes are executed in each iteration of the training procedure. Helping the cGAN learn the target distribution from noise input results in a better model generalization during the test time and allows the model to fit almost perfectly to the target domain distribution. As a result, our model surpasses the Pix2Pix model in segmenting HC18 and Montgomery’s chest x-ray images. Both qualitative and Dice scores show the superiority of our model. Although our proposed method does not use thousand of additional data for pretraining, it produces comparable results for the in and out-domain generalization compared to the state-of-the-art methods.
PDF 15 pages, 7 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录