无监督/半监督/对比学习


2022-10-11 更新

Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma Segmentation and Koos Grade Prediction based on Semi-Supervised Contrastive Learning

Authors:Luyi Han, Yunzhi Huang, Tao Tan, Ritse Mann

Domain adaptation has been widely adopted to transfer styles across multi-vendors and multi-centers, as well as to complement the missing modalities. In this challenge, we proposed an unsupervised domain adaptation framework for cross-modality vestibular schwannoma (VS) and cochlea segmentation and Koos grade prediction. We learn the shared representation from both ceT1 and hrT2 images and recover another modality from the latent representation, and we also utilize proxy tasks of VS segmentation and brain parcellation to restrict the consistency of image structures in domain adaptation. After generating missing modalities, the nnU-Net model is utilized for VS and cochlea segmentation, while a semi-supervised contrastive learning pre-train approach is employed to improve the model performance for Koos grade prediction. On CrossMoDA validation phase Leaderboard, our method received rank 4 in task1 with a mean Dice score of 0.8394 and rank 2 in task2 with Macro-Average Mean Square Error of 0.3941. Our code is available at https://github.com/fiy2W/cmda2022.superpolymerization.
PDF

点此查看论文截图

HiCo: Hierarchical Contrastive Learning for Ultrasound Video Model Pretraining

Authors:Chunhui Zhang, Yixiong Chen, Li Liu, Qiong Liu, Xi Zhou

The self-supervised ultrasound (US) video model pretraining can use a small amount of labeled data to achieve one of the most promising results on US diagnosis. However, it does not take full advantage of multi-level knowledge for learning deep neural networks (DNNs), and thus is difficult to learn transferable feature representations. This work proposes a hierarchical contrastive learning (HiCo) method to improve the transferability for the US video model pretraining. HiCo introduces both peer-level semantic alignment and cross-level semantic alignment to facilitate the interaction between different semantic levels, which can effectively accelerate the convergence speed, leading to better generalization and adaptation of the learned model. Additionally, a softened objective function is implemented by smoothing the hard labels, which can alleviate the negative effect caused by local similarities of images between different classes. Experiments with HiCo on five datasets demonstrate its favorable results over state-of-the-art approaches. The source code of this work is publicly available at \url{https://github.com/983632847/HiCo}.
PDF Paper accepted in ACCV 2022

点此查看论文截图

Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative

Authors:Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, Zhangyang Wang

This paper targets at improving the generalizability of hypergraph neural networks in the low-label regime, through applying the contrastive learning approach from images/graphs (we refer to it as HyperGCL). We focus on the following question: How to construct contrastive views for hypergraphs via augmentations? We provide the solutions in two folds. First, guided by domain knowledge, we fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three vertex augmentation strategies from graph-structured data. Second, in search of more effective views in a data-driven manner, we for the first time propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters. Our technical innovations are reflected in designing both fabricated and generative augmentations of hypergraphs. The experimental findings include: (i) Among fabricated augmentations in HyperGCL, augmenting hyperedges provides the most numerical gains, implying that higher-order information in structures is usually more downstream-relevant; (ii) Generative augmentations do better in preserving higher-order information to further benefit generalizability; (iii) HyperGCL also boosts robustness and fairness in hypergraph representation learning. Codes are released at https://github.com/weitianxin/HyperGCL.
PDF NeurIPS 2022. Supplementary materials are available at https://weitianxin.github.io/files/neurips22_hypergcl_appendix.pdf

点此查看论文截图

CoopHash: Cooperative Learning of Multipurpose Descriptor and Contrastive Pair Generator via Variational MCMC Teaching for Supervised Image Hashing

Authors:Khoa D. Doan, Jianwen Xie, Yaxuan Zhu, Yang Zhao, Ping Li

Leveraging supervised information can lead to superior retrieval performance in the image hashing domain but the performance degrades significantly without enough labeled data. One effective solution to boost the performance is to employ generative models, such as Generative Adversarial Networks (GANs), to generate synthetic data in an image hashing model. However, GAN-based methods are difficult to train and suffer from mode collapse issue, which prevents the hashing approaches from jointly training the generative models and the hash functions. This limitation results in sub-optimal retrieval performance. To overcome this limitation, we propose a novel framework, the generative cooperative hashing network (CoopHash), which is based on the energy-based cooperative learning. CoopHash jointly learns a powerful generative representation of the data and a robust hash function. CoopHash has two components: a top-down contrastive pair generator that synthesizes contrastive images and a bottom-up multipurpose descriptor that simultaneously represents the images from multiple perspectives, including probability density, hash code, latent code, and category. The two components are jointly learned via a novel likelihood-based cooperative learning scheme. We conduct experiments on several real-world datasets and show that the proposed method outperforms the competing hashing supervised methods, achieving up to 10% relative improvement over the current state-of-the-art supervised hashing methods, and exhibits a significantly better performance in out-of-distribution retrieval.
PDF

点此查看论文截图

Self-adversarial Multi-scale Contrastive Learning for Semantic Segmentation of Thermal Facial Images

Authors:Jitesh Joshi, Nadia Bianchi-Berthouze, Youngjun Cho

Segmentation of thermal facial images is a challenging task. This is because facial features often lack salience due to high-dynamic thermal range scenes and occlusion issues. Limited availability of datasets from unconstrained settings further limits the use of the state-of-the-art segmentation networks, loss functions and learning strategies which have been built and validated for RGB images. To address the challenge, we propose Self-Adversarial Multi-scale Contrastive Learning (SAM-CL) framework as a new training strategy for thermal image segmentation. SAM-CL framework consists of a SAM-CL loss function and a thermal image augmentation (TiAug) module as a domain-specific augmentation technique. We use the Thermal-Face-Database to demonstrate effectiveness of our approach. Experiments conducted on the existing segmentation networks (UNET, Attention-UNET, DeepLabV3 and HRNetv2) evidence the consistent performance gains from the SAM-CL framework. Furthermore, we present a qualitative analysis with UBComfort and DeepBreath datasets to discuss how our proposed methods perform in handling unconstrained situations.
PDF Accepted at the British Machine Vision Conference (BMVC), 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录