2022-09-12 更新
HyperMAML: Few-Shot Adaptation of Deep Models with Hypernetworks
Authors:M. Przewięźlikowski, P. Przybysz, J. Tabor, M. Zięba, P. Spurek
The aim of Few-Shot learning methods is to train models which can easily adapt to previously unseen tasks, based on small amounts of data. One of the most popular and elegant Few-Shot learning approaches is Model-Agnostic Meta-Learning (MAML). The main idea behind this method is to learn the general weights of the meta-model, which are further adapted to specific problems in a small number of gradient steps. However, the model’s main limitation lies in the fact that the update procedure is realized by gradient-based optimisation. In consequence, MAML cannot always modify weights to the essential level in one or even a few gradient iterations. On the other hand, using many gradient steps results in a complex and time-consuming optimization procedure, which is hard to train in practice, and may lead to overfitting. In this paper, we propose HyperMAML, a novel generalization of MAML, where the training of the update procedure is also part of the model. Namely, in HyperMAML, instead of updating the weights with gradient descent, we use for this purpose a trainable Hypernetwork. Consequently, in this framework, the model can generate significant updates whose range is not limited to a fixed number of gradient steps. Experiments show that HyperMAML consistently outperforms MAML and performs comparably to other state-of-the-art techniques in a number of standard Few-Shot learning benchmarks.
PDF
点此查看论文截图
Multi-NeuS: 3D Head Portraits from Single Image with Neural Implicit Functions
Authors:Egor Burkov, Ruslan Rakhimov, Aleksandr Safin, Evgeny Burnaev, Victor Lempitsky
We present an approach for the reconstruction of textured 3D meshes of human heads from one or few views. Since such few-shot reconstruction is underconstrained, it requires prior knowledge which is hard to impose on traditional 3D reconstruction algorithms. In this work, we rely on the recently introduced 3D representation $\unicode{x2013}$ neural implicit functions $\unicode{x2013}$ which, being based on neural networks, allows to naturally learn priors about human heads from data, and is directly convertible to textured mesh. Namely, we extend NeuS, a state-of-the-art neural implicit function formulation, to represent multiple objects of a class (human heads in our case) simultaneously. The underlying neural net architecture is designed to learn the commonalities among these objects and to generalize to unseen ones. Our model is trained on just a hundred smartphone videos and does not require any scanned 3D data. Afterwards, the model can fit novel heads in the few-shot or one-shot modes with good results.
PDF