无监督/半监督/对比学习


2022-09-09 更新

VICTOR: Visual Incompatibility Detection with Transformers and Fashion-specific contrastive pre-training

Authors:Stefanos-Iordanis Papadopoulos, Christos Koutlis, Symeon Papadopoulos, Ioannis Kompatsiaris

For fashion outfits to be considered aesthetically pleasing, the garments that constitute them need to be compatible in terms of visual aspects, such as style, category and color. Previous works have defined visual compatibility as a binary classification task with items in a garment being considered as fully compatible or fully incompatible. However, this is not applicable to Outfit Maker applications where users create their own outfits and need to know which specific items may be incompatible with the rest of the outfit. To address this, we propose the Visual InCompatibility TransfORmer (VICTOR) that is optimized for two tasks: 1) overall compatibility as regression and 2) the detection of mismatching items and utilize fashion-specific contrastive language-image pre-training for fine tuning computer vision neural networks on fashion imagery. We build upon the Polyvore outfit benchmark to generate partially mismatching outfits, creating a new dataset termed Polyvore-MISFITs, that is used to train VICTOR. A series of ablation and comparative analyses show that the proposed architecture can compete and even surpass the current state-of-the-art on Polyvore datasets while reducing the instance-wise floating operations by 88%, striking a balance between high performance and efficiency. We release our code at https://github.com/stevejpapad/Visual-InCompatibility-Transformer
PDF 14 pages, 6 figures

点此查看论文截图

Joint Prediction of Meningioma Grade and Brain Invasion via Task-Aware Contrastive Learning

Authors:Tianling Liu, Wennan Liu, Lequan Yu, Liang Wan, Tong Han, Lei Zhu

Preoperative and noninvasive prediction of the meningioma grade is important in clinical practice, as it directly influences the clinical decision making. What’s more, brain invasion in meningioma (i.e., the presence of tumor tissue within the adjacent brain tissue) is an independent criterion for the grading of meningioma and influences the treatment strategy. Although efforts have been reported to address these two tasks, most of them rely on hand-crafted features and there is no attempt to exploit the two prediction tasks simultaneously. In this paper, we propose a novel task-aware contrastive learning algorithm to jointly predict meningioma grade and brain invasion from multi-modal MRIs. Based on the basic multi-task learning framework, our key idea is to adopt contrastive learning strategy to disentangle the image features into task-specific features and task-common features, and explicitly leverage their inherent connections to improve feature representation for the two prediction tasks. In this retrospective study, an MRI dataset was collected, for which 800 patients (containing 148 high-grade, 62 invasion) were diagnosed with meningioma by pathological analysis. Experimental results show that the proposed algorithm outperforms alternative multi-task learning methods, achieving AUCs of 0:8870 and 0:9787 for the prediction of meningioma grade and brain invasion, respectively. The code is available at https://github.com/IsDling/predictTCL.
PDF Accepted by MICCAI2022

点此查看论文截图

MimCo: Masked Image Modeling Pre-training with Contrastive Teacher

Authors:Qiang Zhou, Chaohui Yu, Hao Luo, Zhibin Wang, Hao Li

Recent masked image modeling (MIM) has received much attention in self-supervised learning (SSL), which requires the target model to recover the masked part of the input image. Although MIM-based pre-training methods achieve new state-of-the-art performance when transferred to many downstream tasks, the visualizations show that the learned representations are less separable, especially compared to those based on contrastive learning pre-training. This inspires us to think whether the linear separability of MIM pre-trained representation can be further improved, thereby improving the pre-training performance. Since MIM and contrastive learning tend to utilize different data augmentations and training strategies, combining these two pretext tasks is not trivial. In this work, we propose a novel and flexible pre-training framework, named MimCo, which combines MIM and contrastive learning through two-stage pre-training. Specifically, MimCo takes a pre-trained contrastive learning model as the teacher model and is pre-trained with two types of learning targets: patch-level and image-level reconstruction losses. Extensive transfer experiments on downstream tasks demonstrate the superior performance of our MimCo pre-training framework. Taking ViT-S as an example, when using the pre-trained MoCov3-ViT-S as the teacher model, MimCo only needs 100 epochs of pre-training to achieve 82.53% top-1 finetuning accuracy on Imagenet-1K, which outperforms the state-of-the-art self-supervised learning counterparts.
PDF

点此查看论文截图

Label Structure Preserving Contrastive Embedding for Multi-Label Learning with Missing Labels

Authors:Zhongchen Ma, Lisha Li, Qirong Mao, Songcan Chen

Contrastive learning (CL) has shown impressive advances in image representation learning in whichever supervised multi-class classification or unsupervised learning. However, these CL methods fail to be directly adapted to multi-label image classification due to the difficulty in defining the positive and negative instances to contrast a given anchor image in multi-label scenario, let the label missing one alone, implying that borrowing a commonly-used way from contrastive multi-class learning to define them will incur a lot of false negative instances unfavorable for learning. In this paper, with the introduction of a label correction mechanism to identify missing labels, we first elegantly generate positives and negatives for individual semantic labels of an anchor image, then define a unique contrastive loss for multi-label image classification with missing labels (CLML), the loss is able to accurately bring images close to their true positive images and false negative images, far away from their true negative images. Different from existing multi-label CL losses, CLML also preserves low-rank global and local label dependencies in the latent representation space where such dependencies have been shown to be helpful in dealing with missing labels. To the best of our knowledge, this is the first general multi-label CL loss in the missing-label scenario and thus can seamlessly be paired with those losses of any existing multi-label learning methods just via a single hyperparameter. The proposed strategy has been shown to improve the classification performance of the Resnet101 model by margins of 1.2%, 1.6%, and 1.3% respectively on three standard datasets, MSCOCO, VOC, and NUS-WIDE. Code is available at https://github.com/chuangua/ContrastiveLossMLML.
PDF 11 pages,8 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录