2022-09-05 更新
IMG2IMU: Applying Knowledge from Large-Scale Images to IMU Applications via Contrastive Learning
Authors:Hyungjun Yoon, Hyeongheon Cha, Canh Hoang Nguyen, Taesik Gong, Sung-Ju Lee
Recent advances in machine learning showed that pre-training representations acquired via self-supervised learning could achieve high accuracy on tasks with small training data. Unlike in vision and natural language processing domains, such pre-training for IMU-based applications is challenging, as there are only a few publicly available datasets with sufficient size and diversity to learn generalizable representations. To overcome this problem, we propose IMG2IMU, a novel approach that adapts pre-train representation from large-scale images to diverse few-shot IMU sensing tasks. We convert the sensor data into visually interpretable spectrograms for the model to utilize the knowledge gained from vision. Further, we apply contrastive learning on an augmentation set we designed to learn representations that are tailored to interpreting sensor data. Our extensive evaluations on five different IMU sensing tasks show that IMG2IMU consistently outperforms the baselines, illustrating that vision knowledge can be incorporated into a few-shot learning environment for IMU sensing tasks.
PDF 16 pages
点此查看论文截图
Artifact-Tolerant Clustering-Guided Contrastive Embedding Learning for Ophthalmic Images
Authors:Min Shi, Anagha Lokhande, Mojtaba S. Fazli, Vishal Sharma, Yu Tian, Yan Luo, Louis R. Pasquale, Tobias Elze, Michael V. Boland, Nazlee Zebardast, David S. Friedman, Lucy Q. Shen, Mengyu Wang
Ophthalmic images and derivatives such as the retinal nerve fiber layer (RNFL) thickness map are crucial for detecting and monitoring ophthalmic diseases (e.g., glaucoma). For computer-aided diagnosis of eye diseases, the key technique is to automatically extract meaningful features from ophthalmic images that can reveal the biomarkers (e.g., RNFL thinning patterns) linked to functional vision loss. However, representation learning from ophthalmic images that links structural retinal damage with human vision loss is non-trivial mostly due to large anatomical variations between patients. The task becomes even more challenging in the presence of image artifacts, which are common due to issues with image acquisition and automated segmentation. In this paper, we propose an artifact-tolerant unsupervised learning framework termed EyeLearn for learning representations of ophthalmic images. EyeLearn has an artifact correction module to learn representations that can best predict artifact-free ophthalmic images. In addition, EyeLearn adopts a clustering-guided contrastive learning strategy to explicitly capture the intra- and inter-image affinities. During training, images are dynamically organized in clusters to form contrastive samples in which images in the same or different clusters are encouraged to learn similar or dissimilar representations, respectively. To evaluate EyeLearn, we use the learned representations for visual field prediction and glaucoma detection using a real-world ophthalmic image dataset of glaucoma patients. Extensive experiments and comparisons with state-of-the-art methods verified the effectiveness of EyeLearn for learning optimal feature representations from ophthalmic images.
PDF 10 pages
点此查看论文截图
Multi-modal Contrastive Representation Learning for Entity Alignment
Authors:Zhenxi Lin, Ziheng Zhang, Meng Wang, Yinghui Shi, Xian Wu, Yefeng Zheng
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs, which consist of structural triples and images associated with entities. Most previous works focus on how to utilize and encode information from different modalities, while it is not trivial to leverage multi-modal knowledge in entity alignment because of the modality heterogeneity. In this paper, we propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model, to obtain effective joint representations for multi-modal entity alignment. Different from previous works, MCLEA considers task-oriented modality and models the inter-modal relationships for each entity representation. In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions. Extensive experimental results show that MCLEA outperforms state-of-the-art baselines on public datasets under both supervised and unsupervised settings.
PDF Accepted by COLING 2022
点此查看论文截图
A Novel Approach for Pill-Prescription Matching with GNN Assistance and Contrastive Learning
Authors:Trung Thanh Nguyen, Hoang Dang Nguyen, Thanh Hung Nguyen, Huy Hieu Pham, Ichiro Ide, Phi Le Nguyen
Medication mistaking is one of the risks that can result in unpredictable consequences for patients. To mitigate this risk, we develop an automatic system that correctly identifies pill-prescription from mobile images. Specifically, we define a so-called pill-prescription matching task, which attempts to match the images of the pills taken with the pills’ names in the prescription. We then propose PIMA, a novel approach using Graph Neural Network (GNN) and contrastive learning to address the targeted problem. In particular, GNN is used to learn the spatial correlation between the text boxes in the prescription and thereby highlight the text boxes carrying the pill names. In addition, contrastive learning is employed to facilitate the modeling of cross-modal similarity between textual representations of pill names and visual representations of pill images. We conducted extensive experiments and demonstrated that PIMA outperforms baseline models on a real-world dataset of pill and prescription images that we constructed. Specifically, PIMA improves the accuracy from 19.09% to 46.95% compared to other baselines. We believe our work can open up new opportunities to build new clinical applications and improve medication safety and patient care.
PDF Accepted for publication and presentation at the 19th Pacific Rim International Conference on Artificial Intelligence (PRICAI 2022)
点此查看论文截图
Contrastive Semantic-Guided Image Smoothing Network
Authors:Jie Wang, Yongzhen Wang, Yidan Feng, Lina Gong, Xuefeng Yan, Haoran Xie, Fu Lee Wang, Mingqiang Wei
Image smoothing is a fundamental low-level vision task that aims to preserve salient structures of an image while removing insignificant details. Deep learning has been explored in image smoothing to deal with the complex entanglement of semantic structures and trivial details. However, current methods neglect two important facts in smoothing: 1) naive pixel-level regression supervised by the limited number of high-quality smoothing ground-truth could lead to domain shift and cause generalization problems towards real-world images; 2) texture appearance is closely related to object semantics, so that image smoothing requires awareness of semantic difference to apply adaptive smoothing strengths. To address these issues, we propose a novel Contrastive Semantic-Guided Image Smoothing Network (CSGIS-Net) that combines both contrastive prior and semantic prior to facilitate robust image smoothing. The supervision signal is augmented by leveraging undesired smoothing effects as negative teachers, and by incorporating segmentation tasks to encourage semantic distinctiveness. To realize the proposed network, we also enrich the original VOC dataset with texture enhancement and smoothing labels, namely VOC-smooth, which first bridges image smoothing and semantic segmentation. Extensive experiments demonstrate that the proposed CSGIS-Net outperforms state-of-the-art algorithms by a large margin. Code and dataset are available at https://github.com/wangjie6866/CSGIS-Net.
PDF
点此查看论文截图
Object Discovery via Contrastive Learning for Weakly Supervised Object Detection
Authors:Jinhwan Seo, Wonho Bae, Danica J. Sutherland, Junhyug Noh, Daijin Kim
Weakly Supervised Object Detection (WSOD) is a task that detects objects in an image using a model trained only on image-level annotations. Current state-of-the-art models benefit from self-supervised instance-level supervision, but since weak supervision does not include count or location information, the most common ``argmax’’ labeling method often ignores many instances of objects. To alleviate this issue, we propose a novel multiple instance labeling method called object discovery. We further introduce a new contrastive loss under weak supervision where no instance-level information is available for sampling, called weakly supervised contrastive loss (WSCL). WSCL aims to construct a credible similarity threshold for object discovery by leveraging consistent features for embedding vectors in the same class. As a result, we achieve new state-of-the-art results on MS-COCO 2014 and 2017 as well as PASCAL VOC 2012, and competitive results on PASCAL VOC 2007.
PDF Accepted at ECCV 2022. For project page, see https://jinhseo.github.io/research/wsod.html For code, see https://github.com/jinhseo/OD-WSCL