场景文本检测识别


2022-08-27 更新

1st Place Solution to ECCV 2022 Challenge on Out of Vocabulary Scene Text Understanding: Cropped Word Recognition

Authors:Zhangzi Zhu, Yu Hao, Wenqing Zhang, Chuhui Xue, Song Bai

This report presents our winner solution to ECCV 2022 challenge on Out-of-Vocabulary Scene Text Understanding (OOV-ST) : Cropped Word Recognition. This challenge is held in the context of ECCV 2022 workshop on Text in Everything (TiE), which aims to extract out-of-vocabulary words from natural scene images. In the competition, we first pre-train SCATTER on the synthetic datasets, then fine-tune the model on the training set with data augmentations. Meanwhile, two additional models are trained specifically for long and vertical texts. Finally, we combine the output from different models with different layers, different backbones, and different seeds as the final results. Our solution achieves an overall word accuracy of 69.73% when considering both in-vocabulary and out-of-vocabulary words.
PDF The OOV Challenge Organisers recalculated the results of the competition and our ranking has changed. So we want to withdraw the report

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录