NeRF


2022-07-29 更新

Learning Multi-Object Dynamics with Compositional Neural Radiance Fields

Authors:Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, Marc Toussaint

We present a method to learn compositional multi-object dynamics models from image observations based on implicit object encoders, Neural Radiance Fields (NeRFs), and graph neural networks. NeRFs have become a popular choice for representing scenes due to their strong 3D prior. However, most NeRF approaches are trained on a single scene, representing the whole scene with a global model, making generalization to novel scenes, containing different numbers of objects, challenging. Instead, we present a compositional, object-centric auto-encoder framework that maps multiple views of the scene to a set of latent vectors representing each object separately. The latent vectors parameterize individual NeRFs from which the scene can be reconstructed. Based on those latent vectors, we train a graph neural network dynamics model in the latent space to achieve compositionality for dynamics prediction. A key feature of our approach is that the latent vectors are forced to encode 3D information through the NeRF decoder, which enables us to incorporate structural priors in learning the dynamics models, making long-term predictions more stable compared to several baselines. Simulated and real world experiments show that our method can model and learn the dynamics of compositional scenes including rigid and deformable objects. Video: https://dannydriess.github.io/compnerfdyn/
PDF v3: real robot exp

点此查看论文截图

Is Attention All NeRF Needs?

Authors:Mukund Varma T, Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan, Zhangyang Wang

We present Generalizable NeRF Transformer (GNT), a pure, unified transformer-based architecture that efficiently reconstructs Neural Radiance Fields (NeRFs) on the fly from source views. Unlike prior works on NeRF that optimize a per-scene implicit representation by inverting a handcrafted rendering equation, GNT achieves generalizable neural scene representation and rendering, by encapsulating two transformer-based stages. The first stage of GNT, called view transformer, leverages multi-view geometry as an inductive bias for attention-based scene representation, and predicts coordinate-aligned features by aggregating information from epipolar lines on the neighboring views. The second stage of GNT, named ray transformer, renders novel views by ray marching and directly decodes the sequence of sampled point features using the attention mechanism. Our experiments demonstrate that when optimized on a single scene, GNT can successfully reconstruct NeRF without explicit rendering formula, and even improve the PSNR by ~1.3dB on complex scenes due to the learnable ray renderer. When trained across various scenes, GNT consistently achieves the state-of-the-art performance when transferring to forward-facing LLFF dataset (LPIPS ~20%, SSIM ~25%$) and synthetic blender dataset (LPIPS ~20%, SSIM ~4%). In addition, we show that depth and occlusion can be inferred from the learned attention maps, which implies that the pure attention mechanism is capable of learning a physically-grounded rendering process. All these results bring us one step closer to the tantalizing hope of utilizing transformers as the “universal modeling tool” even for graphics. Please refer to our project page for video results: https://vita-group.github.io/GNT/.
PDF Preprint

点此查看论文截图

Multimodal Image Synthesis and Editing: A Survey

Authors:Fangneng Zhan, Yingchen Yu, Rongliang Wu, Jiahui Zhang, Shijian Lu, Lingjie Liu, Adam Kortylewski, Christian Theobalt, Eric Xing

As information exists in various modalities in real world, effective interaction and fusion among multimodal information plays a key role for the creation and perception of multimodal data in computer vision and deep learning research. With superb power in modelling the interaction among multimodal information, multimodal image synthesis and editing has become a hot research topic in recent years. Instead of providing explicit guidance for network training, multimodal guidance offers intuitive and flexible means for image synthesis and editing. On the other hand, this field is also facing several challenges in alignment of features with inherent modality gaps, synthesis of high-resolution images, faithful evaluation metrics, etc. In this survey, we comprehensively contextualize the advance of the recent multimodal image synthesis and editing and formulate taxonomies according to data modality and model architectures. We start with an introduction to different types of guidance modalities in image synthesis and editing. We then describe multimodal image synthesis and editing approaches extensively with detailed frameworks including Generative Adversarial Networks (GANs), Auto-regressive models, Diffusion models, Neural Radiance Fields (NeRF) and other methods. This is followed by a comprehensive description of benchmark datasets and corresponding evaluation metrics as widely adopted in multimodal image synthesis and editing, as well as detailed comparisons of various synthesis methods with analysis of respective advantages and limitations. Finally, we provide insights about the current research challenges and possible directions for future research. We hope this survey could lay a sound and valuable foundation for future development of multimodal image synthesis and editing. A project associated with this survey is available at https://github.com/fnzhan/MISE.
PDF Under submission of TPAMI

点此查看论文截图

Generalizable Patch-Based Neural Rendering

Authors:Mohammed Suhail, Carlos Esteves, Leonid Sigal, Ameesh Makadia

Neural rendering has received tremendous attention since the advent of Neural Radiance Fields (NeRF), and has pushed the state-of-the-art on novel-view synthesis considerably. The recent focus has been on models that overfit to a single scene, and the few attempts to learn models that can synthesize novel views of unseen scenes mostly consist of combining deep convolutional features with a NeRF-like model. We propose a different paradigm, where no deep features and no NeRF-like volume rendering are needed. Our method is capable of predicting the color of a target ray in a novel scene directly, just from a collection of patches sampled from the scene. We first leverage epipolar geometry to extract patches along the epipolar lines of each reference view. Each patch is linearly projected into a 1D feature vector and a sequence of transformers process the collection. For positional encoding, we parameterize rays as in a light field representation, with the crucial difference that the coordinates are canonicalized with respect to the target ray, which makes our method independent of the reference frame and improves generalization. We show that our approach outperforms the state-of-the-art on novel view synthesis of unseen scenes even when being trained with considerably less data than prior work.
PDF Project Page with code and results at https://mohammedsuhail.net/gen_patch_neural_rendering/

点此查看论文截图

AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance Fields

Authors:Andreas Kurz, Thomas Neff, Zhaoyang Lv, Michael Zollhöfer, Markus Steinberger

Novel view synthesis has recently been revolutionized by learning neural radiance fields directly from sparse observations. However, rendering images with this new paradigm is slow due to the fact that an accurate quadrature of the volume rendering equation requires a large number of samples for each ray. Previous work has mainly focused on speeding up the network evaluations that are associated with each sample point, e.g., via caching of radiance values into explicit spatial data structures, but this comes at the expense of model compactness. In this paper, we propose a novel dual-network architecture that takes an orthogonal direction by learning how to best reduce the number of required sample points. To this end, we split our network into a sampling and shading network that are jointly trained. Our training scheme employs fixed sample positions along each ray, and incrementally introduces sparsity throughout training to achieve high quality even at low sample counts. After fine-tuning with the target number of samples, the resulting compact neural representation can be rendered in real-time. Our experiments demonstrate that our approach outperforms concurrent compact neural representations in terms of quality and frame rate and performs on par with highly efficient hybrid representations. Code and supplementary material is available at https://thomasneff.github.io/adanerf.
PDF ECCV 2022. Project page: https://thomasneff.github.io/adanerf

点此查看论文截图

Injecting 3D Perception of Controllable NeRF-GAN into StyleGAN for Editable Portrait Image Synthesis

Authors:Jeong-gi Kwak, Yuanming Li, Dongsik Yoon, Donghyeon Kim, David Han, Hanseok Ko

Over the years, 2D GANs have achieved great successes in photorealistic portrait generation. However, they lack 3D understanding in the generation process, thus they suffer from multi-view inconsistency problem. To alleviate the issue, many 3D-aware GANs have been proposed and shown notable results, but 3D GANs struggle with editing semantic attributes. The controllability and interpretability of 3D GANs have not been much explored. In this work, we propose two solutions to overcome these weaknesses of 2D GANs and 3D-aware GANs. We first introduce a novel 3D-aware GAN, SURF-GAN, which is capable of discovering semantic attributes during training and controlling them in an unsupervised manner. After that, we inject the prior of SURF-GAN into StyleGAN to obtain a high-fidelity 3D-controllable generator. Unlike existing latent-based methods allowing implicit pose control, the proposed 3D-controllable StyleGAN enables explicit pose control over portrait generation. This distillation allows direct compatibility between 3D control and many StyleGAN-based techniques (e.g., inversion and stylization), and also brings an advantage in terms of computational resources. Our codes are available at https://github.com/jgkwak95/SURF-GAN.
PDF ECCV 2022, project page: https://jgkwak95.github.io/surfgan/

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录