GAN


2022-07-29 更新

Rewriting Geometric Rules of a GAN

Authors:Sheng-Yu Wang, David Bau, Jun-Yan Zhu

Deep generative models make visual content creation more accessible to novice users by automating the synthesis of diverse, realistic content based on a collected dataset. However, the current machine learning approaches miss a key element of the creative process — the ability to synthesize things that go far beyond the data distribution and everyday experience. To begin to address this issue, we enable a user to “warp” a given model by editing just a handful of original model outputs with desired geometric changes. Our method applies a low-rank update to a single model layer to reconstruct edited examples. Furthermore, to combat overfitting, we propose a latent space augmentation method based on style-mixing. Our method allows a user to create a model that synthesizes endless objects with defined geometric changes, enabling the creation of a new generative model without the burden of curating a large-scale dataset. We also demonstrate that edited models can be composed to achieve aggregated effects, and we present an interactive interface to enable users to create new models through composition. Empirical measurements on multiple test cases suggest the advantage of our method against recent GAN fine-tuning methods. Finally, we showcase several applications using the edited models, including latent space interpolation and image editing.
PDF SIGGRAPH 2022 website: https://peterwang512.github.io/GANWarping/ code: https://github.com/PeterWang512/GANWarping

点此查看论文截图

Multimodal Image Synthesis and Editing: A Survey

Authors:Fangneng Zhan, Yingchen Yu, Rongliang Wu, Jiahui Zhang, Shijian Lu, Lingjie Liu, Adam Kortylewski, Christian Theobalt, Eric Xing

As information exists in various modalities in real world, effective interaction and fusion among multimodal information plays a key role for the creation and perception of multimodal data in computer vision and deep learning research. With superb power in modelling the interaction among multimodal information, multimodal image synthesis and editing has become a hot research topic in recent years. Instead of providing explicit guidance for network training, multimodal guidance offers intuitive and flexible means for image synthesis and editing. On the other hand, this field is also facing several challenges in alignment of features with inherent modality gaps, synthesis of high-resolution images, faithful evaluation metrics, etc. In this survey, we comprehensively contextualize the advance of the recent multimodal image synthesis and editing and formulate taxonomies according to data modality and model architectures. We start with an introduction to different types of guidance modalities in image synthesis and editing. We then describe multimodal image synthesis and editing approaches extensively with detailed frameworks including Generative Adversarial Networks (GANs), Auto-regressive models, Diffusion models, Neural Radiance Fields (NeRF) and other methods. This is followed by a comprehensive description of benchmark datasets and corresponding evaluation metrics as widely adopted in multimodal image synthesis and editing, as well as detailed comparisons of various synthesis methods with analysis of respective advantages and limitations. Finally, we provide insights about the current research challenges and possible directions for future research. We hope this survey could lay a sound and valuable foundation for future development of multimodal image synthesis and editing. A project associated with this survey is available at https://github.com/fnzhan/MISE.
PDF Under submission of TPAMI

点此查看论文截图

Leveraging GAN Priors for Few-Shot Part Segmentation

Authors:Mengya Han, Heliang Zheng, Chaoyue Wang, Yong Luo, Han Hu, Bo Du

Few-shot part segmentation aims to separate different parts of an object given only a few annotated samples. Due to the challenge of limited data, existing works mainly focus on learning classifiers over pre-trained features, failing to learn task-specific features for part segmentation. In this paper, we propose to learn task-specific features in a “pre-training”-“fine-tuning” paradigm. We conduct prompt designing to reduce the gap between the pre-train task (i.e., image generation) and the downstream task (i.e., part segmentation), so that the GAN priors for generation can be leveraged for segmentation. This is achieved by projecting part segmentation maps into the RGB space and conducting interpolation between RGB segmentation maps and original images. Specifically, we design a fine-tuning strategy to progressively tune an image generator into a segmentation generator, where the supervision of the generator varying from images to segmentation maps by interpolation. Moreover, we propose a two-stream architecture, i.e., a segmentation stream to generate task-specific features, and an image stream to provide spatial constraints. The image stream can be regarded as a self-supervised auto-encoder, and this enables our model to benefit from large-scale support images. Overall, this work is an attempt to explore the internal relevance between generation tasks and perception tasks by prompt designing. Extensive experiments show that our model can achieve state-of-the-art performance on several part segmentation datasets.
PDF

点此查看论文截图

PixelFolder: An Efficient Progressive Pixel Synthesis Network for Image Generation

Authors:Jing He, Yiyi Zhou, Qi Zhang, Jun Peng, Yunhang Shen, Xiaoshuai Sun, Chao Chen, Rongrong Ji

Pixel synthesis is a promising research paradigm for image generation, which can well exploit pixel-wise prior knowledge for generation. However, existing methods still suffer from excessive memory footprint and computation overhead. In this paper, we propose a progressive pixel synthesis network towards efficient image generation, coined as PixelFolder. Specifically, PixelFolder formulates image generation as a progressive pixel regression problem and synthesizes images via a multi-stage structure, which can greatly reduce the overhead caused by large tensor transformations. In addition, we introduce novel pixel folding operations to further improve model efficiency while maintaining pixel-wise prior knowledge for end-to-end regression. With these innovative designs, we greatly reduce the expenditure of pixel synthesis, e.g., reducing 89% computation and 53% parameters compared with the latest pixel synthesis method CIPS. To validate our approach, we conduct extensive experiments on two benchmark datasets, namely FFHQ and LSUN Church. The experimental results show that with much less expenditure, PixelFolder obtains new state-of-the-art (SOTA) performance on two benchmark datasets, i.e., 3.77 FID and 2.45 FID on FFHQ and LSUN Church, respectively.Meanwhile, PixelFolder is also more efficient than the SOTA methods like StyleGAN2, reducing about 72% computation and 31% parameters, respectively. These results greatly validate the effectiveness of the proposed PixelFolder.
PDF Accepted by ECCV2022. The code is available at https://github.com/BlingHe/PixelFolder

点此查看论文截图

Injecting 3D Perception of Controllable NeRF-GAN into StyleGAN for Editable Portrait Image Synthesis

Authors:Jeong-gi Kwak, Yuanming Li, Dongsik Yoon, Donghyeon Kim, David Han, Hanseok Ko

Over the years, 2D GANs have achieved great successes in photorealistic portrait generation. However, they lack 3D understanding in the generation process, thus they suffer from multi-view inconsistency problem. To alleviate the issue, many 3D-aware GANs have been proposed and shown notable results, but 3D GANs struggle with editing semantic attributes. The controllability and interpretability of 3D GANs have not been much explored. In this work, we propose two solutions to overcome these weaknesses of 2D GANs and 3D-aware GANs. We first introduce a novel 3D-aware GAN, SURF-GAN, which is capable of discovering semantic attributes during training and controlling them in an unsupervised manner. After that, we inject the prior of SURF-GAN into StyleGAN to obtain a high-fidelity 3D-controllable generator. Unlike existing latent-based methods allowing implicit pose control, the proposed 3D-controllable StyleGAN enables explicit pose control over portrait generation. This distillation allows direct compatibility between 3D control and many StyleGAN-based techniques (e.g., inversion and stylization), and also brings an advantage in terms of computational resources. Our codes are available at https://github.com/jgkwak95/SURF-GAN.
PDF ECCV 2022, project page: https://jgkwak95.github.io/surfgan/

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录