I2I Translation


2022-06-07 更新

Edge Augmentation for Large-Scale Sketch Recognition without Sketches

Authors:Nikos Efthymiadis, Giorgos Tolias, Ondrej Chum

This work addresses scaling up the sketch classification task into a large number of categories. Collecting sketches for training is a slow and tedious process that has so far precluded any attempts to large-scale sketch recognition. We overcome the lack of training sketch data by exploiting labeled collections of natural images that are easier to obtain. To bridge the domain gap we present a novel augmentation technique that is tailored to the task of learning sketch recognition from a training set of natural images. Randomization is introduced in the parameters of edge detection and edge selection. Natural images are translated to a pseudo-novel domain called “randomized Binary Thin Edges” (rBTE), which is used as a training domain instead of natural images. The ability to scale up is demonstrated by training CNN-based sketch recognition of more than 2.5 times larger number of categories than used previously. For this purpose, a dataset of natural images from 874 categories is constructed by combining a number of popular computer vision datasets. The categories are selected to be suitable for sketch recognition. To estimate the performance, a subset of 393 categories with sketches is also collected.
PDF

论文截图

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

Authors:Xinyu Jia, Chuang Zhu, Minzhen Li, Wenqi Tang, Shengjie Liu, Wenli Zhou

It is very challenging for various visual tasks such as image fusion, pedestrian detection and image-to-image translation in low light conditions due to the loss of effective target areas. In this case, infrared and visible images can be used together to provide both rich detail information and effective target areas. In this paper, we present LLVIP, a visible-infrared paired dataset for low-light vision. This dataset contains 30976 images, or 15488 pairs, most of which were taken at very dark scenes, and all of the images are strictly aligned in time and space. Pedestrians in the dataset are labeled. We compare the dataset with other visible-infrared datasets and evaluate the performance of some popular visual algorithms including image fusion, pedestrian detection and image-to-image translation on the dataset. The experimental results demonstrate the complementary effect of fusion on image information, and find the deficiency of existing algorithms of the three visual tasks in very low-light conditions. We believe the LLVIP dataset will contribute to the community of computer vision by promoting image fusion, pedestrian detection and image-to-image translation in very low-light applications. The dataset is being released in https://bupt-ai-cz.github.io/LLVIP. Raw data is also provided for further research such as image registration.
PDF 10 pages, 11 figures, ICCV workshop

论文截图

MLAN: Multi-Level Adversarial Network for Domain Adaptive Semantic Segmentation

Authors:Jiaxing Huang, Dayan Guan, Shijian Lu, Aoran Xiao

Recent progresses in domain adaptive semantic segmentation demonstrate the effectiveness of adversarial learning (AL) in unsupervised domain adaptation. However, most adversarial learning based methods align source and target distributions at a global image level but neglect the inconsistency around local image regions. This paper presents a novel multi-level adversarial network (MLAN) that aims to address inter-domain inconsistency at both global image level and local region level optimally. MLAN has two novel designs, namely, region-level adversarial learning (RL-AL) and co-regularized adversarial learning (CR-AL). Specifically, RL-AL models prototypical regional context-relations explicitly in the feature space of a labelled source domain and transfers them to an unlabelled target domain via adversarial learning. CR-AL fuses region-level AL and image-level AL optimally via mutual regularization. In addition, we design a multi-level consistency map that can guide domain adaptation in both input space ($i.e.$, image-to-image translation) and output space ($i.e.$, self-training) effectively. Extensive experiments show that MLAN outperforms the state-of-the-art with a large margin consistently across multiple datasets.
PDF Accepted to Pattern Recognition, 2022

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录