NeRF


2022-04-28 更新

Gravitationally Lensed Black Hole Emission Tomography

Authors:Aviad Levis, Pratul P. Srinivasan, Andrew A. Chael, Ren Ng, Katherine L. Bouman

Measurements from the Event Horizon Telescope enabled the visualization of light emission around a black hole for the first time. So far, these measurements have been used to recover a 2D image under the assumption that the emission field is static over the period of acquisition. In this work, we propose BH-NeRF, a novel tomography approach that leverages gravitational lensing to recover the continuous 3D emission field near a black hole. Compared to other 3D reconstruction or tomography settings, this task poses two significant challenges: first, rays near black holes follow curved paths dictated by general relativity, and second, we only observe measurements from a single viewpoint. Our method captures the unknown emission field using a continuous volumetric function parameterized by a coordinate-based neural network, and uses knowledge of Keplerian orbital dynamics to establish correspondence between 3D points over time. Together, these enable BH-NeRF to recover accurate 3D emission fields, even in challenging situations with sparse measurements and uncertain orbital dynamics. This work takes the first steps in showing how future measurements from the Event Horizon Telescope could be used to recover evolving 3D emission around the supermassive black hole in our Galactic center.
PDF To appear in the IEEE Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), 2022. Supplemental material including accompanying pdf, code, and video highlight can be found in the project page: http://imaging.cms.caltech.edu/bhnerf/

论文截图

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering

Authors:Mijeong Kim, Seonguk Seo, Bohyung Han

We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation. The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints by imposing the entropy constraint of the density in each ray. In addition, to alleviate the potential degenerate issue when all training images are acquired from almost redundant viewpoints, we further incorporate the spatially smoothness constraint into the estimated images by restricting information gains from a pair of rays with slightly different viewpoints. The main idea of our algorithm is to make reconstructed scenes compact along individual rays and consistent across rays in the neighborhood. The proposed regularizers can be plugged into most of existing neural volume rendering techniques based on NeRF in a straightforward way. Despite its simplicity, we achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
PDF CVPR 2022, Website: http://cv.snu.ac.kr/research/InfoNeRF

论文截图

HDR-NeRF: High Dynamic Range Neural Radiance Fields

Authors:Xin Huang, Qi Zhang, Ying Feng, Hongdong Li, Xuan Wang, Qing Wang

We present High Dynamic Range Neural Radiance Fields (HDR-NeRF) to recover an HDR radiance field from a set of low dynamic range (LDR) views with different exposures. Using the HDR-NeRF, we are able to generate both novel HDR views and novel LDR views under different exposures. The key to our method is to model the physical imaging process, which dictates that the radiance of a scene point transforms to a pixel value in the LDR image with two implicit functions: a radiance field and a tone mapper. The radiance field encodes the scene radiance (values vary from 0 to +infty), which outputs the density and radiance of a ray by giving corresponding ray origin and ray direction. The tone mapper models the mapping process that a ray hitting on the camera sensor becomes a pixel value. The color of the ray is predicted by feeding the radiance and the corresponding exposure time into the tone mapper. We use the classic volume rendering technique to project the output radiance, colors, and densities into HDR and LDR images, while only the input LDR images are used as the supervision. We collect a new forward-facing HDR dataset to evaluate the proposed method. Experimental results on synthetic and real-world scenes validate that our method can not only accurately control the exposures of synthesized views but also render views with a high dynamic range.
PDF Accepted to CVPR 2022. Project page: https://shsf0817.github.io/hdr-nerf/

论文截图

3D-aware Image Synthesis via Learning Structural and Textural Representations

Authors:Yinghao Xu, Sida Peng, Ceyuan Yang, Yujun Shen, Bolei Zhou

Making generative models 3D-aware bridges the 2D image space and the 3D physical world yet remains challenging. Recent attempts equip a Generative Adversarial Network (GAN) with a Neural Radiance Field (NeRF), which maps 3D coordinates to pixel values, as a 3D prior. However, the implicit function in NeRF has a very local receptive field, making the generator hard to become aware of the global structure. Meanwhile, NeRF is built on volume rendering which can be too costly to produce high-resolution results, increasing the optimization difficulty. To alleviate these two problems, we propose a novel framework, termed as VolumeGAN, for high-fidelity 3D-aware image synthesis, through explicitly learning a structural representation and a textural representation. We first learn a feature volume to represent the underlying structure, which is then converted to a feature field using a NeRF-like model. The feature field is further accumulated into a 2D feature map as the textural representation, followed by a neural renderer for appearance synthesis. Such a design enables independent control of the shape and the appearance. Extensive experiments on a wide range of datasets show that our approach achieves sufficiently higher image quality and better 3D control than the previous methods.
PDF CVPR 2022 camera-ready, Project page: https://genforce.github.io/volumegan/

论文截图

Control-NeRF: Editable Feature Volumes for Scene Rendering and Manipulation

Authors:Verica Lazova, Vladimir Guzov, Kyle Olszewski, Sergey Tulyakov, Gerard Pons-Moll

We present a novel method for performing flexible, 3D-aware image content manipulation while enabling high-quality novel view synthesis. While NeRF-based approaches are effective for novel view synthesis, such models memorize the radiance for every point in a scene within a neural network. Since these models are scene-specific and lack a 3D scene representation, classical editing such as shape manipulation, or combining scenes is not possible. Hence, editing and combining NeRF-based scenes has not been demonstrated. With the aim of obtaining interpretable and controllable scene representations, our model couples learnt scene-specific feature volumes with a scene agnostic neural rendering network. With this hybrid representation, we decouple neural rendering from scene-specific geometry and appearance. We can generalize to novel scenes by optimizing only the scene-specific 3D feature representation, while keeping the parameters of the rendering network fixed. The rendering function learnt during the initial training stage can thus be easily applied to new scenes, making our approach more flexible. More importantly, since the feature volumes are independent of the rendering model, we can manipulate and combine scenes by editing their corresponding feature volumes. The edited volume can then be plugged into the rendering model to synthesize high-quality novel views. We demonstrate various scene manipulations, including mixing scenes, deforming objects and inserting objects into scenes, while still producing photo-realistic results.
PDF

论文截图

Dense Depth Priors for Neural Radiance Fields from Sparse Input Views

Authors:Barbara Roessle, Jonathan T. Barron, Ben Mildenhall, Pratul P. Srinivasan, Matthias Nießner

Neural radiance fields (NeRF) encode a scene into a neural representation that enables photo-realistic rendering of novel views. However, a successful reconstruction from RGB images requires a large number of input views taken under static conditions - typically up to a few hundred images for room-size scenes. Our method aims to synthesize novel views of whole rooms from an order of magnitude fewer images. To this end, we leverage dense depth priors in order to constrain the NeRF optimization. First, we take advantage of the sparse depth data that is freely available from the structure from motion (SfM) preprocessing step used to estimate camera poses. Second, we use depth completion to convert these sparse points into dense depth maps and uncertainty estimates, which are used to guide NeRF optimization. Our method enables data-efficient novel view synthesis on challenging indoor scenes, using as few as 18 images for an entire scene.
PDF CVPR 2022, project page: https://barbararoessle.github.io/dense_depth_priors_nerf/ , video: https://youtu.be/zzkvvdcvksc

论文截图

NeRFReN: Neural Radiance Fields with Reflections

Authors:Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, Song-Hai Zhang

Neural Radiance Fields (NeRF) has achieved unprecedented view synthesis quality using coordinate-based neural scene representations. However, NeRF’s view dependency can only handle simple reflections like highlights but cannot deal with complex reflections such as those from glass and mirrors. In these scenarios, NeRF models the virtual image as real geometries which leads to inaccurate depth estimation, and produces blurry renderings when the multi-view consistency is violated as the reflected objects may only be seen under some of the viewpoints. To overcome these issues, we introduce NeRFReN, which is built upon NeRF to model scenes with reflections. Specifically, we propose to split a scene into transmitted and reflected components, and model the two components with separate neural radiance fields. Considering that this decomposition is highly under-constrained, we exploit geometric priors and apply carefully-designed training strategies to achieve reasonable decomposition results. Experiments on various self-captured scenes show that our method achieves high-quality novel view synthesis and physically sound depth estimation results while enabling scene editing applications.
PDF Accepted to CVPR 2022. Project page: https://bennyguo.github.io/nerfren/

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录