GAN


2022-04-28 更新

Optimized latent-code selection for explainable conditional text-to-image GANs

Authors:Zhenxing Zhang, Lambert Schomaker

The task of text-to-image generation has achieved remarkable progress due to the advances in the conditional generative adversarial networks (GANs). However, existing conditional text-to-image GANs approaches mostly concentrate on improving both image quality and semantic relevance but ignore the explainability of the model which plays a vital role in real-world applications. In this paper, we present a variety of techniques to take a deep look into the latent space and semantic space of the conditional text-to-image GANs model. We introduce pairwise linear interpolation of latent codes and linguistic' linear interpolation to study what the model has learned within the latent space andlinguistic’ embeddings. Subsequently, we extend linear interpolation to triangular interpolation conditioned on three corners to further analyze the model. After that, we build a Good/Bad data set containing unsuccessfully and successfully synthetic samples and corresponding latent codes for the image-quality research. Based on this data set, we propose a framework for finding good latent codes by utilizing a linear SVM. Experimental results on the recent DiverGAN generator trained on two benchmark data sets qualitatively prove the effectiveness of our presented techniques, with a better than 94\% accuracy in predicting ${Good}$/${Bad}$ classes for latent vectors. The Good/Bad data set is publicly available at https://zenodo.org/record/5850224#.YeGMwP7MKUk.
PDF arXiv admin note: substantial text overlap with arXiv:2202.12929

论文截图

Grasping the Arrow of Time from the Singularity: Decoding Micromotion in Low-dimensional Latent Spaces from StyleGAN

Authors:Qiucheng Wu, Yifan Jiang, Junru Wu, Kai Wang, Gong Zhang, Humphrey Shi, Zhangyang Wang, Shiyu Chang

The disentanglement of StyleGAN latent space has paved the way for realistic and controllable image editing, but does StyleGAN know anything about temporal motion, as it was only trained on static images? To study the motion features in the latent space of StyleGAN, in this paper, we hypothesize and demonstrate that a series of meaningful, natural, and versatile small, local movements (referred to as “micromotion”, such as expression, head movement, and aging effect) can be represented in low-rank spaces extracted from the latent space of a conventionally pre-trained StyleGAN-v2 model for face generation, with the guidance of proper “anchors” in the form of either short text or video clips. Starting from one target face image, with the editing direction decoded from the low-rank space, its micromotion features can be represented as simple as an affine transformation over its latent feature. Perhaps more surprisingly, such micromotion subspace, even learned from just single target face, can be painlessly transferred to other unseen face images, even those from vastly different domains (such as oil painting, cartoon, and sculpture faces). It demonstrates that the local feature geometry corresponding to one type of micromotion is aligned across different face subjects, and hence that StyleGAN-v2 is indeed “secretly” aware of the subject-disentangled feature variations caused by that micromotion. We present various successful examples of applying our low-dimensional micromotion subspace technique to directly and effortlessly manipulate faces, showing high robustness, low computational overhead, and impressive domain transferability. Our codes are available at https://github.com/wuqiuche/micromotion-StyleGAN.
PDF 13 pages, 8 figures

论文截图

Expanding the Latent Space of StyleGAN for Real Face Editing

Authors:Yin Yu, Ghasedi Kamran, Wu HsiangTao, Yang Jiaolong, Tong Xi, Fu Yun

Recently, a surge of face editing techniques have been proposed to employ the pretrained StyleGAN for semantic manipulation. To successfully edit a real image, one must first convert the input image into StyleGAN’s latent variables. However, it is still challenging to find latent variables, which have the capacity for preserving the appearance of the input subject (e.g., identity, lighting, hairstyles) as well as enabling meaningful manipulations. In this paper, we present a method to expand the latent space of StyleGAN with additional content features to break down the trade-off between low-distortion and high-editability. Specifically, we proposed a two-branch model, where the style branch first tackles the entanglement issue by the sparse manipulation of latent codes, and the content branch then mitigates the distortion issue by leveraging the content and appearance details from the input image. We confirm the effectiveness of our method using extensive qualitative and quantitative experiments on real face editing and reconstruction tasks.
PDF

论文截图

Generating natural images with direct Patch Distributions Matching

Authors:Ariel Elnekave, Yair Weiss

Many traditional computer vision algorithms generate realistic images by requiring that each patch in the generated image be similar to a patch in a training image and vice versa. Recently, this classical approach has been replaced by adversarial training with a patch discriminator. The adversarial approach avoids the computational burden of finding nearest neighbors of patches but often requires very long training times and may fail to match the distribution of patches. In this paper we leverage the recently developed Sliced Wasserstein Distance and develop an algorithm that explicitly and efficiently minimizes the distance between patch distributions in two images. Our method is conceptually simple, requires no training and can be implemented in a few lines of codes. On a number of image generation tasks we show that our results are often superior to single-image-GANs, require no training, and can generate high quality images in a few seconds. Our implementation is available at https://github.com/ariel415el/GPDM
PDF Corrected typos In text and figures (Thanks to Ronen Schaffer)

论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录