无监督/半监督/对比学习


2022-03-29 更新

Statistical Dependency Guided Contrastive Learning for Multiple Labeling in Prenatal Ultrasound

Authors:Shuangchi He, Zehui Lin, Xin Yang, Chaoyu Chen, Jian Wang, Xue Shuang, Ziwei Deng, Qin Liu, Yan Cao, Xiduo Lu, Ruobing Huang, Nishant Ravikumar, Alejandro Frangi, Yuanji Zhang, Yi Xiong, Dong Ni

Standard plane recognition plays an important role in prenatal ultrasound (US) screening. Automatically recognizing the standard plane along with the corresponding anatomical structures in US image can not only facilitate US image interpretation but also improve diagnostic efficiency. In this study, we build a novel multi-label learning (MLL) scheme to identify multiple standard planes and corresponding anatomical structures of fetus simultaneously. Our contribution is three-fold. First, we represent the class correlation by word embeddings to capture the fine-grained semantic and latent statistical concurrency. Second, we equip the MLL with a graph convolutional network to explore the inner and outer relationship among categories. Third, we propose a novel cluster relabel-based contrastive learning algorithm to encourage the divergence among ambiguous classes. Extensive validation was performed on our large in-house dataset. Our approach reports the highest accuracy as 90.25% for standard planes labeling, 85.59% for planes and structures labeling and mAP as 94.63%. The proposed MLL scheme provides a novel perspective for standard plane recognition and can be easily extended to other medical image classification tasks.
PDF Accepted by MICCAI-MLMI 2021

论文截图

Uncertainty-aware Contrastive Distillation for Incremental Semantic Segmentation

Authors:Guanglei Yang, Enrico Fini, Dan Xu, Paolo Rota, Mingli Ding, Moin Nabi, Xavier Alameda-Pineda, Elisa Ricci

A fundamental and challenging problem in deep learning is catastrophic forgetting, i.e. the tendency of neural networks to fail to preserve the knowledge acquired from old tasks when learning new tasks. This problem has been widely investigated in the research community and several Incremental Learning (IL) approaches have been proposed in the past years. While earlier works in computer vision have mostly focused on image classification and object detection, more recently some IL approaches for semantic segmentation have been introduced. These previous works showed that, despite its simplicity, knowledge distillation can be effectively employed to alleviate catastrophic forgetting. In this paper, we follow this research direction and, inspired by recent literature on contrastive learning, we propose a novel distillation framework, Uncertainty-aware Contrastive Distillation (\method). In a nutshell, \method~is operated by introducing a novel distillation loss that takes into account all the images in a mini-batch, enforcing similarity between features associated to all the pixels from the same classes, and pulling apart those corresponding to pixels from different classes. In order to mitigate catastrophic forgetting, we contrast features of the new model with features extracted by a frozen model learned at the previous incremental step. Our experimental results demonstrate the advantage of the proposed distillation technique, which can be used in synergy with previous IL approaches, and leads to state-of-art performance on three commonly adopted benchmarks for incremental semantic segmentation. The code is available at \url{https://github.com/ygjwd12345/UCD}.
PDF TPAMI

论文截图

Vision-Language Pre-Training with Triple Contrastive Learning

Authors:Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul Chilimbi, Junzhou Huang

Vision-language representation learning largely benefits from image-text alignment through contrastive losses (e.g., InfoNCE loss). The success of this alignment strategy is attributed to its capability in maximizing the mutual information (MI) between an image and its matched text. However, simply performing cross-modal alignment (CMA) ignores data potential within each modality, which may result in degraded representations. For instance, although CMA-based models are able to map image-text pairs close together in the embedding space, they fail to ensure that similar inputs from the same modality stay close by. This problem can get even worse when the pre-training data is noisy. In this paper, we propose triple contrastive learning (TCL) for vision-language pre-training by leveraging both cross-modal and intra-modal self-supervision. Besides CMA, TCL introduces an intra-modal contrastive objective to provide complementary benefits in representation learning. To take advantage of localized and structural information from image and text input, TCL further maximizes the average MI between local regions of image/text and their global summary. To the best of our knowledge, ours is the first work that takes into account local structure information for multi-modality representation learning. Experimental evaluations show that our approach is competitive and achieves the new state of the art on various common down-stream vision-language tasks such as image-text retrieval and visual question answering.
PDF CVPR 2022; code: https://github.com/uta-smile/TCL

论文截图

Contrastive Graph Learning for Population-based fMRI Classification

Authors:Xuesong Wang, Lina Yao, Islem Rekik, Yu Zhang

Contrastive self-supervised learning has recently benefited fMRI classification with inductive biases. Its weak label reliance prevents overfitting on small medical datasets and tackles the high intraclass variances. Nonetheless, existing contrastive methods generate resemblant pairs only on pixel-level features of 3D medical images, while the functional connectivity that reveals critical cognitive information is under-explored. Additionally, existing methods predict labels on individual contrastive representation without recognizing neighbouring information in the patient group, whereas interpatient contrast can act as a similarity measure suitable for population-based classification. We hereby proposed contrastive functional connectivity graph learning for population-based fMRI classification. Representations on the functional connectivity graphs are “repelled” for heterogeneous patient pairs meanwhile homogeneous pairs “attract” each other. Then a dynamic population graph that strengthens the connections between similar patients is updated for classification. Experiments on a multi-site dataset ADHD200 validate the superiority of the proposed method on various metrics. We initially visualize the population relationships and exploit potential subtypes.
PDF

论文截图

Large-scale Bilingual Language-Image Contrastive Learning

Authors:Byungsoo Ko, Geonmo Gu

This paper is a technical report to share our experience and findings building a Korean and English bilingual multimodal model. While many of the multimodal datasets focus on English and multilingual multimodal research uses machine-translated texts, employing such machine-translated texts is limited to describing unique expressions, cultural information, and proper noun in languages other than English. In this work, we collect 1.1 billion image-text pairs (708 million Korean and 476 million English) and train a bilingual multimodal model named KELIP. We introduce simple yet effective training schemes, including MAE pre-training and multi-crop augmentation. Extensive experiments demonstrate that a model trained with such training schemes shows competitive performance in both languages. Moreover, we discuss multimodal-related research questions: 1) strong augmentation-based methods can distract the model from learning proper multimodal relations; 2) training multimodal model without cross-lingual relation can learn the relation via visual semantics; 3) our bilingual KELIP can capture cultural differences of visual semantics for the same meaning of words; 4) a large-scale multimodal model can be used for multimodal feature analogy. We hope that this work will provide helpful experience and findings for future research. We provide an open-source pre-trained KELIP.
PDF Accepted by ICLRW2022

论文截图

Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation

Authors:Jinheng Xie, Jianfeng Xiang, Junliang Chen, Xianxu Hou, Xiaodong Zhao, Linlin Shen

While class activation map (CAM) generated by image classification network has been widely used for weakly supervised object localization (WSOL) and semantic segmentation (WSSS), such classifiers usually focus on discriminative object regions. In this paper, we propose Contrastive learning for Class-agnostic Activation Map (C$^2$AM) generation only using unlabeled image data, without the involvement of image-level supervision. The core idea comes from the observation that i) semantic information of foreground objects usually differs from their backgrounds; ii) foreground objects with similar appearance or background with similar color/texture have similar representations in the feature space. We form the positive and negative pairs based on the above relations and force the network to disentangle foreground and background with a class-agnostic activation map using a novel contrastive loss. As the network is guided to discriminate cross-image foreground-background, the class-agnostic activation maps learned by our approach generate more complete object regions. We successfully extracted from C$^2$AM class-agnostic object bounding boxes for object localization and background cues to refine CAM generated by classification network for semantic segmentation. Extensive experiments on CUB-200-2011, ImageNet-1K, and PASCAL VOC2012 datasets show that both WSOL and WSSS can benefit from the proposed C$^2$AM.
PDF Accepted by CVPR 2022

论文截图

A Unified Contrastive Energy-based Model for Understanding the Generative Ability of Adversarial Training

Authors:Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin

Adversarial Training (AT) is known as an effective approach to enhance the robustness of deep neural networks. Recently researchers notice that robust models with AT have good generative ability and can synthesize realistic images, while the reason behind it is yet under-explored. In this paper, we demystify this phenomenon by developing a unified probabilistic framework, called Contrastive Energy-based Models (CEM). On the one hand, we provide the first probabilistic characterization of AT through a unified understanding of robustness and generative ability. On the other hand, our unified framework can be extended to the unsupervised scenario, which interprets unsupervised contrastive learning as an important sampling of CEM. Based on these, we propose a principled method to develop adversarial learning and sampling methods. Experiments show that the sampling methods derived from our framework improve the sample quality in both supervised and unsupervised learning. Notably, our unsupervised adversarial sampling method achieves an Inception score of 9.61 on CIFAR-10, which is superior to previous energy-based models and comparable to state-of-the-art generative models.
PDF Accepted by ICLR 2022

论文截图

文章作者: Harvey
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Harvey !
  目录