Open-Set


2024-12-17 更新

Resilience to the Flowing Unknown: an Open Set Recognition Framework for Data Streams

Authors:Marcos Barcina-Blanco, Jesus L. Lobo, Pablo Garcia-Bringas, Javier Del Ser

Modern digital applications extensively integrate Artificial Intelligence models into their core systems, offering significant advantages for automated decision-making. However, these AI-based systems encounter reliability and safety challenges when handling continuously generated data streams in complex and dynamic scenarios. This work explores the concept of resilient AI systems, which must operate in the face of unexpected events, including instances that belong to patterns that have not been seen during the training process. This is an issue that regular closed-set classifiers commonly encounter in streaming scenarios, as they are designed to compulsory classify any new observation into one of the training patterns (i.e., the so-called \textit{over-occupied space} problem). In batch learning, the Open Set Recognition research area has consistently confronted this issue by requiring models to robustly uphold their classification performance when processing query instances from unknown patterns. In this context, this work investigates the application of an Open Set Recognition framework that combines classification and clustering to address the \textit{over-occupied space} problem in streaming scenarios. Specifically, we systematically devise a benchmark comprising different classification datasets with varying ratios of known to unknown classes. Experiments are presented on this benchmark to compare the performance of the proposed hybrid framework with that of individual incremental classifiers. Discussions held over the obtained results highlight situations where the proposed framework performs best, and delineate the limitations and hurdles encountered by incremental classifiers in effectively resolving the challenges posed by open-world streaming environments.
PDF 12 pages, 3 figures, an updated version of this article is published in LNAI,volume 14857 as part of the conference proceedings HAIS 2024

点此查看论文截图

OSAD: Open-Set Aircraft Detection in SAR Images

Authors:Xiayang Xiao, Zhuoxuan Li, Haipeng Wang

Current mainstream SAR image object detection methods still lack robustness when dealing with unknown objects in open environments. Open-set detection aims to enable detectors trained on a closed set to detect all known objects and identify unknown objects in open-set environments. The key challenges are how to improve the generalization to potential unknown objects and reduce the empirical classification risk of known categories under strong supervision. To address these challenges, a novel open-set aircraft detector for SAR images is proposed, named Open-Set Aircraft Detection (OSAD), which is equipped with three dedicated components: global context modeling (GCM), location quality-driven pseudo labeling generation (LPG), and prototype contrastive learning (PCL). GCM effectively enhances the network’s representation of objects by attention maps which is formed through the capture of long sequential positional relationships. LPG leverages clues about object positions and shapes to optimize localization quality, avoiding overfitting to known category information and enhancing generalization to potential unknown objects. PCL employs prototype-based contrastive encoding loss to promote instance-level intra-class compactness and inter-class variance, aiming to minimize the overlap between known and unknown distributions and reduce the empirical classification risk of known categories. Extensive experiments have demonstrated that the proposed method can effectively detect unknown objects and exhibit competitive performance without compromising closed-set performance. The highest absolute gain which ranges from 0 to 18.36% can be achieved on the average precision of unknown objects.
PDF 15 pages,11 figures. This work has been submitted to the IEEE for possible publication on March 2024

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录