2024-09-06 更新
Spatial Diffusion for Cell Layout Generation
Authors:Chen Li, Xiaoling Hu, Shahira Abousamra, Meilong Xu, Chao Chen
Generative models, such as GANs and diffusion models, have been used to augment training sets and boost performances in different tasks. We focus on generative models for cell detection instead, i.e., locating and classifying cells in given pathology images. One important information that has been largely overlooked is the spatial patterns of the cells. In this paper, we propose a spatial-pattern-guided generative model for cell layout generation. Specifically, a novel diffusion model guided by spatial features and generates realistic cell layouts has been proposed. We explore different density models as spatial features for the diffusion model. In downstream tasks, we show that the generated cell layouts can be used to guide the generation of high-quality pathology images. Augmenting with these images can significantly boost the performance of SOTA cell detection methods. The code is available at https://github.com/superlc1995/Diffusion-cell.
PDF 12 pages, 4 figures, accepted by MICCAI 2024
点此查看论文截图
SVP: Style-Enhanced Vivid Portrait Talking Head Diffusion Model
Authors:Weipeng Tan, Chuming Lin, Chengming Xu, Xiaozhong Ji, Junwei Zhu, Chengjie Wang, Yanwei Fu
Talking Head Generation (THG), typically driven by audio, is an important and challenging task with broad application prospects in various fields such as digital humans, film production, and virtual reality. While diffusion model-based THG methods present high quality and stable content generation, they often overlook the intrinsic style which encompasses personalized features such as speaking habits and facial expressions of a video. As consequence, the generated video content lacks diversity and vividness, thus being limited in real life scenarios. To address these issues, we propose a novel framework named Style-Enhanced Vivid Portrait (SVP) which fully leverages style-related information in THG. Specifically, we first introduce the novel probabilistic style prior learning to model the intrinsic style as a Gaussian distribution using facial expressions and audio embedding. The distribution is learned through the ‘bespoked’ contrastive objective, effectively capturing the dynamic style information in each video. Then we finetune a pretrained Stable Diffusion (SD) model to inject the learned intrinsic style as a controlling signal via cross attention. Experiments show that our model generates diverse, vivid, and high-quality videos with flexible control over intrinsic styles, outperforming existing state-of-the-art methods.
PDF
点此查看论文截图
Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning
Authors:Huaxi Huang, Xin Yuan, Qiyu Liao, Dadong Wang, Tongliang Liu
In the realm of multimedia data analysis, the extensive use of image datasets has escalated concerns over privacy protection within such data. Current research predominantly focuses on privacy protection either in data sharing or upon the release of trained machine learning models. Our study pioneers a comprehensive privacy protection framework that safeguards image data privacy concurrently during data sharing and model publication. We propose an interactive image privacy protection framework that utilizes generative machine learning models to modify image information at the attribute level and employs machine unlearning algorithms for the privacy preservation of model parameters. This user-interactive framework allows for adjustments in privacy protection intensity based on user feedback on generated images, striking a balance between maximal privacy safeguarding and maintaining model performance. Within this framework, we instantiate two modules: a differential privacy diffusion model for protecting attribute information in images and a feature unlearning algorithm for efficient updates of the trained model on the revised image dataset. Our approach demonstrated superiority over existing methods on facial datasets across various attribute classifications.
PDF
点此查看论文截图
TCDiff: Triple Condition Diffusion Model with 3D Constraints for Stylizing Synthetic Faces
Authors:Bernardo Biesseck, Pedro Vidal, Luiz Coelho, Roger Granada, David Menotti|
A robust face recognition model must be trained using datasets that include a large number of subjects and numerous samples per subject under varying conditions (such as pose, expression, age, noise, and occlusion). Due to ethical and privacy concerns, large-scale real face datasets have been discontinued, such as MS1MV3, and synthetic face generators have been proposed, utilizing GANs and Diffusion Models, such as SYNFace, SFace, DigiFace-1M, IDiff-Face, DCFace, and GANDiffFace, aiming to supply this demand. Some of these methods can produce high-fidelity realistic faces, but with low intra-class variance, while others generate high-variance faces with low identity consistency. In this paper, we propose a Triple Condition Diffusion Model (TCDiff) to improve face style transfer from real to synthetic faces through 2D and 3D facial constraints, enhancing face identity consistency while keeping the necessary high intra-class variance. Face recognition experiments using 1k, 2k, and 5k classes of our new dataset for training outperform state-of-the-art synthetic datasets in real face benchmarks such as LFW, CFP-FP, AgeDB, and BUPT. Our source code is available at: https://github.com/BOVIFOCR/tcdiff.
PDF SIBGRAPI 2024
点此查看论文截图
RealisHuman: A Two-Stage Approach for Refining Malformed Human Parts in Generated Images
Authors:Benzhi Wang, Jingkai Zhou, Jingqi Bai, Yang Yang, Weihua Chen, Fan Wang, Zhen Lei
In recent years, diffusion models have revolutionized visual generation, outperforming traditional frameworks like Generative Adversarial Networks (GANs). However, generating images of humans with realistic semantic parts, such as hands and faces, remains a significant challenge due to their intricate structural complexity. To address this issue, we propose a novel post-processing solution named RealisHuman. The RealisHuman framework operates in two stages. First, it generates realistic human parts, such as hands or faces, using the original malformed parts as references, ensuring consistent details with the original image. Second, it seamlessly integrates the rectified human parts back into their corresponding positions by repainting the surrounding areas to ensure smooth and realistic blending. The RealisHuman framework significantly enhances the realism of human generation, as demonstrated by notable improvements in both qualitative and quantitative metrics. Code is available at https://github.com/Wangbenzhi/RealisHuman.
PDF
点此查看论文截图
ArtiFade: Learning to Generate High-quality Subject from Blemished Images
Authors:Shuya Yang, Shaozhe Hao, Yukang Cao, Kwan-Yee K. Wong
Subject-driven text-to-image generation has witnessed remarkable advancements in its ability to learn and capture characteristics of a subject using only a limited number of images. However, existing methods commonly rely on high-quality images for training and may struggle to generate reasonable images when the input images are blemished by artifacts. This is primarily attributed to the inadequate capability of current techniques in distinguishing subject-related features from disruptive artifacts. In this paper, we introduce ArtiFade to tackle this issue and successfully generate high-quality artifact-free images from blemished datasets. Specifically, ArtiFade exploits fine-tuning of a pre-trained text-to-image model, aiming to remove artifacts. The elimination of artifacts is achieved by utilizing a specialized dataset that encompasses both unblemished images and their corresponding blemished counterparts during fine-tuning. ArtiFade also ensures the preservation of the original generative capabilities inherent within the diffusion model, thereby enhancing the overall performance of subject-driven methods in generating high-quality and artifact-free images. We further devise evaluation benchmarks tailored for this task. Through extensive qualitative and quantitative experiments, we demonstrate the generalizability of ArtiFade in effective artifact removal under both in-distribution and out-of-distribution scenarios.
PDF
点此查看论文截图
DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation
Authors:Wenliang Zhao, Haolin Wang, Jie Zhou, Jiwen Lu
Diffusion probabilistic models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling. Recent predictor-corrector diffusion samplers have significantly reduced the required number of function evaluations (NFE), but inherently suffer from a misalignment issue caused by the extra corrector step, especially with a large classifier-free guidance scale (CFG). In this paper, we introduce a new fast DPM sampler called DC-Solver, which leverages dynamic compensation (DC) to mitigate the misalignment of the predictor-corrector samplers. The dynamic compensation is controlled by compensation ratios that are adaptive to the sampling steps and can be optimized on only 10 datapoints by pushing the sampling trajectory toward a ground truth trajectory. We further propose a cascade polynomial regression (CPR) which can instantly predict the compensation ratios on unseen sampling configurations. Additionally, we find that the proposed dynamic compensation can also serve as a plug-and-play module to boost the performance of predictor-only samplers. Extensive experiments on both unconditional sampling and conditional sampling demonstrate that our DC-Solver can consistently improve the sampling quality over previous methods on different DPMs with a wide range of resolutions up to 1024$\times$1024. Notably, we achieve 10.38 FID (NFE=5) on unconditional FFHQ and 0.394 MSE (NFE=5, CFG=7.5) on Stable-Diffusion-2.1. Code is available at https://github.com/wl-zhao/DC-Solver
PDF Accepted by ECCV 2024