2024-09-05 更新
3D Gaussian Splatting for Large-scale 3D Surface Reconstruction from Aerial Images
Authors:YuanZheng Wu, Jin Liu, Shunping Ji
Recently, 3D Gaussian Splatting (3DGS) has garnered significant attention. However, the unstructured nature of 3DGS poses challenges for large-scale surface reconstruction from aerial images. To address this gap, we propose the first large-scale surface reconstruction method for multi-view stereo (MVS) aerial images based on 3DGS, named Aerial Gaussian Splatting (AGS). Initially, we introduce a data chunking method tailored for large-scale aerial imagery, making the modern 3DGS technology feasible for surface reconstruction over extensive scenes. Additionally, we integrate the Ray-Gaussian Intersection method to obtain normal and depth information, facilitating geometric constraints. Finally, we introduce a multi-view geometric consistency constraint to enhance global geometric consistency and improve reconstruction accuracy. Our experiments on multiple datasets demonstrate for the first time that the GS-based technique can match traditional aerial MVS methods on geometric accuracy, and beat state-of-the-art GS-based methods on geometry and rendering quality.
PDF 11 pages
点此查看论文截图
PRoGS: Progressive Rendering of Gaussian Splats
Authors:Brent Zoomers, Maarten Wijnants, Ivan Molenaers, Joni Vanherck, Jeroen Put, Lode Jorissen, Nick Michiels
Over the past year, 3D Gaussian Splatting (3DGS) has received significant attention for its ability to represent 3D scenes in a perceptually accurate manner. However, it can require a substantial amount of storage since each splat’s individual data must be stored. While compression techniques offer a potential solution by reducing the memory footprint, they still necessitate retrieving the entire scene before any part of it can be rendered. In this work, we introduce a novel approach for progressively rendering such scenes, aiming to display visible content that closely approximates the final scene as early as possible without loading the entire scene into memory. This approach benefits both on-device rendering applications limited by memory constraints and streaming applications where minimal bandwidth usage is preferred. To achieve this, we approximate the contribution of each Gaussian to the final scene and construct an order of prioritization on their inclusion in the rendering process. Additionally, we demonstrate that our approach can be combined with existing compression methods to progressively render (and stream) 3DGS scenes, optimizing bandwidth usage by focusing on the most important splats within a scene. Overall, our work establishes a foundation for making remotely hosted 3DGS content more quickly accessible to end-users in over-the-top consumption scenarios, with our results showing significant improvements in quality across all metrics compared to existing methods.
PDF
点此查看论文截图
GGS: Generalizable Gaussian Splatting for Lane Switching in Autonomous Driving
Authors:Huasong Han, Kaixuan Zhou, Xiaoxiao Long, Yusen Wang, Chunxia Xiao
We propose GGS, a Generalizable Gaussian Splatting method for Autonomous Driving which can achieve realistic rendering under large viewpoint changes. Previous generalizable 3D gaussian splatting methods are limited to rendering novel views that are very close to the original pair of images, which cannot handle large differences in viewpoint. Especially in autonomous driving scenarios, images are typically collected from a single lane. The limited training perspective makes rendering images of a different lane very challenging. To further improve the rendering capability of GGS under large viewpoint changes, we introduces a novel virtual lane generation module into GSS method to enables high-quality lane switching even without a multi-lane dataset. Besides, we design a diffusion loss to supervise the generation of virtual lane image to further address the problem of lack of data in the virtual lanes. Finally, we also propose a depth refinement module to optimize depth estimation in the GSS model. Extensive validation of our method, compared to existing approaches, demonstrates state-of-the-art performance.
PDF
点此查看论文截图
Object Gaussian for Monocular 6D Pose Estimation from Sparse Views
Authors:Luqing Luo, Shichu Sun, Jiangang Yang, Linfang Zheng, Jinwei Du, Jian Liu
Monocular object pose estimation, as a pivotal task in computer vision and robotics, heavily depends on accurate 2D-3D correspondences, which often demand costly CAD models that may not be readily available. Object 3D reconstruction methods offer an alternative, among which recent advancements in 3D Gaussian Splatting (3DGS) afford a compelling potential. Yet its performance still suffers and tends to overfit with fewer input views. Embracing this challenge, we introduce SGPose, a novel framework for sparse view object pose estimation using Gaussian-based methods. Given as few as ten views, SGPose generates a geometric-aware representation by starting with a random cuboid initialization, eschewing reliance on Structure-from-Motion (SfM) pipeline-derived geometry as required by traditional 3DGS methods. SGPose removes the dependence on CAD models by regressing dense 2D-3D correspondences between images and the reconstructed model from sparse input and random initialization, while the geometric-consistent depth supervision and online synthetic view warping are key to the success. Experiments on typical benchmarks, especially on the Occlusion LM-O dataset, demonstrate that SGPose outperforms existing methods even under sparse view constraints, under-scoring its potential in real-world applications.
PDF
点此查看论文截图
UC-NeRF: Uncertainty-aware Conditional Neural Radiance Fields from Endoscopic Sparse Views
Authors:Jiaxin Guo, Jiangliu Wang, Ruofeng Wei, Di Kang, Qi Dou, Yun-hui Liu
Visualizing surgical scenes is crucial for revealing internal anatomical structures during minimally invasive procedures. Novel View Synthesis is a vital technique that offers geometry and appearance reconstruction, enhancing understanding, planning, and decision-making in surgical scenes. Despite the impressive achievements of Neural Radiance Field (NeRF), its direct application to surgical scenes produces unsatisfying results due to two challenges: endoscopic sparse views and significant photometric inconsistencies. In this paper, we propose uncertainty-aware conditional NeRF for novel view synthesis to tackle the severe shape-radiance ambiguity from sparse surgical views. The core of UC-NeRF is to incorporate the multi-view uncertainty estimation to condition the neural radiance field for modeling the severe photometric inconsistencies adaptively. Specifically, our UC-NeRF first builds a consistency learner in the form of multi-view stereo network, to establish the geometric correspondence from sparse views and generate uncertainty estimation and feature priors. In neural rendering, we design a base-adaptive NeRF network to exploit the uncertainty estimation for explicitly handling the photometric inconsistencies. Furthermore, an uncertainty-guided geometry distillation is employed to enhance geometry learning. Experiments on the SCARED and Hamlyn datasets demonstrate our superior performance in rendering appearance and geometry, consistently outperforming the current state-of-the-art approaches. Our code will be released at \url{https://github.com/wrld/UC-NeRF}.
PDF