图像生成


2024-08-31 更新

SurGen: Text-Guided Diffusion Model for Surgical Video Generation

Authors:Joseph Cho, Samuel Schmidgall, Cyril Zakka, Mrudang Mathur, Rohan Shad, William Hiesinger

Diffusion-based video generation models have made significant strides, producing outputs with improved visual fidelity, temporal coherence, and user control. These advancements hold great promise for improving surgical education by enabling more realistic, diverse, and interactive simulation environments. In this study, we introduce SurGen, a text-guided diffusion model tailored for surgical video synthesis, producing the highest resolution and longest duration videos among existing surgical video generation models. We validate the visual and temporal quality of the outputs using standard image and video generation metrics. Additionally, we assess their alignment to the corresponding text prompts through a deep learning classifier trained on surgical data. Our results demonstrate the potential of diffusion models to serve as valuable educational tools for surgical trainees.
PDF

点此查看论文截图

Enhancing Conditional Image Generation with Explainable Latent Space Manipulation

Authors:Kshitij Pathania

In the realm of image synthesis, achieving fidelity to a reference image while adhering to conditional prompts remains a significant challenge. This paper proposes a novel approach that integrates a diffusion model with latent space manipulation and gradient-based selective attention mechanisms to address this issue. Leveraging Grad-SAM (Gradient-based Selective Attention Manipulation), we analyze the cross attention maps of the cross attention layers and gradients for the denoised latent vector, deriving importance scores of elements of denoised latent vector related to the subject of interest. Using this information, we create masks at specific timesteps during denoising to preserve subjects while seamlessly integrating the reference image features. This approach ensures the faithful formation of subjects based on conditional prompts, while concurrently refining the background for a more coherent composition. Our experiments on places365 dataset demonstrate promising results, with our proposed model achieving the lowest mean and median Frechet Inception Distance (FID) scores compared to baseline models, indicating superior fidelity preservation. Furthermore, our model exhibits competitive performance in aligning the generated images with provided textual descriptions, as evidenced by high CLIP scores. These results highlight the effectiveness of our approach in both fidelity preservation and textual context preservation, offering a significant advancement in text-to-image synthesis tasks.
PDF 7 pages , 5 figures

点此查看论文截图

Improving Diffusion-based Data Augmentation with Inversion Spherical Interpolation

Authors:Yanghao Wang, Long Chen

Data Augmentation (DA), \ie, synthesizing faithful and diverse samples to expand the original training set, is a prevalent and effective strategy to improve various visual recognition tasks. With the powerful image generation ability, diffusion-based DA has shown strong performance gains on different benchmarks. In this paper, we analyze today’s diffusion-based DA methods, and argue that they cannot take account of both faithfulness and diversity, which are two critical keys for generating high-quality samples and boosting final classification performance. To this end, we propose a novel Diffusion-based Inversion Interpolation DA method: Diff-II. Specifically, Diff-II consists of three main steps: 1) Category concepts learning: Learning concept embeddings for each category. 2) Inversion interpolation: Calculating the inversion for each image, and conducting spherical interpolation for two randomly sampled inversions from the same category. 3) Two-stage denoising: Using different prompts to generate synthesized images in a coarse-to-fine manner. Extensive experiments on multiple image classification tasks (\eg, few-shot, long-tailed, and out-of-distribution classification) have demonstrated its effectiveness over state-of-the-art diffusion-based DA methods.
PDF

点此查看论文截图

SAU: A Dual-Branch Network to Enhance Long-Tailed Recognition via Generative Models

Authors:Guangxi Li, Yinsheng Song, Mingkai Zheng

Long-tailed distributions in image recognition pose a considerable challenge due to the severe imbalance between a few dominant classes with numerous examples and many minority classes with few samples. Recently, the use of large generative models to create synthetic data for image classification has been realized, but utilizing synthetic data to address the challenge of long-tailed recognition remains relatively unexplored. In this work, we proposed the use of synthetic data as a complement to long-tailed datasets to eliminate the impact of data imbalance. To tackle this real-synthetic mixed dataset, we designed a two-branch model that contains Synthetic-Aware and Unaware branches (SAU). The core ideas are (1) a synthetic-unaware branch for classification that mixes real and synthetic data and treats all data equally without distinguishing between them. (2) A synthetic-aware branch for improving the robustness of the feature extractor by distinguishing between real and synthetic data and learning their discrepancies. Extensive experimental results demonstrate that our method can improve the accuracy of long-tailed image recognition. Notably, our approach achieves state-of-the-art Top-1 accuracy and significantly surpasses other methods on CIFAR-10-LT and CIFAR-100-LT datasets across various imbalance factors. Our code is available at https://github.com/lgX1123/gm4lt.
PDF 15 pages

点此查看论文截图

ResVG: Enhancing Relation and Semantic Understanding in Multiple Instances for Visual Grounding

Authors:Minghang Zheng, Jiahua Zhang, Qingchao Chen, Yuxin Peng, Yang Liu

Visual grounding aims to localize the object referred to in an image based on a natural language query. Although progress has been made recently, accurately localizing target objects within multiple-instance distractions (multiple objects of the same category as the target) remains a significant challenge. Existing methods demonstrate a significant performance drop when there are multiple distractions in an image, indicating an insufficient understanding of the fine-grained semantics and spatial relationships between objects. In this paper, we propose a novel approach, the Relation and Semantic-sensitive Visual Grounding (ResVG) model, to address this issue. Firstly, we enhance the model’s understanding of fine-grained semantics by injecting semantic prior information derived from text queries into the model. This is achieved by leveraging text-to-image generation models to produce images representing the semantic attributes of target objects described in queries. Secondly, we tackle the lack of training samples with multiple distractions by introducing a relation-sensitive data augmentation method. This method generates additional training data by synthesizing images containing multiple objects of the same category and pseudo queries based on their spatial relationships. The proposed ReSVG model significantly improves the model’s ability to comprehend both object semantics and spatial relations, leading to enhanced performance in visual grounding tasks, particularly in scenarios with multiple-instance distractions. We conduct extensive experiments to validate the effectiveness of our methods on five datasets. Code is available at https://github.com/minghangz/ResVG.
PDF Accepted by ACM MM 2024

点此查看论文截图

Self-Improving Diffusion Models with Synthetic Data

Authors:Sina Alemohammad, Ahmed Imtiaz Humayun, Shruti Agarwal, John Collomosse, Richard Baraniuk

The artificial intelligence (AI) world is running out of real data for training increasingly large generative models, resulting in accelerating pressure to train on synthetic data. Unfortunately, training new generative models with synthetic data from current or past generation models creates an autophagous (self-consuming) loop that degrades the quality and/or diversity of the synthetic data in what has been termed model autophagy disorder (MAD) and model collapse. Current thinking around model autophagy recommends that synthetic data is to be avoided for model training lest the system deteriorate into MADness. In this paper, we take a different tack that treats synthetic data differently from real data. Self-IMproving diffusion models with Synthetic data (SIMS) is a new training concept for diffusion models that uses self-synthesized data to provide negative guidance during the generation process to steer a model’s generative process away from the non-ideal synthetic data manifold and towards the real data distribution. We demonstrate that SIMS is capable of self-improvement; it establishes new records based on the Fr\’echet inception distance (FID) metric for CIFAR-10 and ImageNet-64 generation and achieves competitive results on FFHQ-64 and ImageNet-512. Moreover, SIMS is, to the best of our knowledge, the first prophylactic generative AI algorithm that can be iteratively trained on self-generated synthetic data without going MAD. As a bonus, SIMS can adjust a diffusion model’s synthetic data distribution to match any desired in-domain target distribution to help mitigate biases and ensure fairness.
PDF

点此查看论文截图

COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation

Authors:Jiefeng Li, Ye Yuan, Davis Rempe, Haotian Zhang, Pavlo Molchanov, Cewu Lu, Jan Kautz, Umar Iqbal

Estimating global human motion from moving cameras is challenging due to the entanglement of human and camera motions. To mitigate the ambiguity, existing methods leverage learned human motion priors, which however often result in oversmoothed motions with misaligned 2D projections. To tackle this problem, we propose COIN, a control-inpainting motion diffusion prior that enables fine-grained control to disentangle human and camera motions. Although pre-trained motion diffusion models encode rich motion priors, we find it non-trivial to leverage such knowledge to guide global motion estimation from RGB videos. COIN introduces a novel control-inpainting score distillation sampling method to ensure well-aligned, consistent, and high-quality motion from the diffusion prior within a joint optimization framework. Furthermore, we introduce a new human-scene relation loss to alleviate the scale ambiguity by enforcing consistency among the humans, camera, and scene. Experiments on three challenging benchmarks demonstrate the effectiveness of COIN, which outperforms the state-of-the-art methods in terms of global human motion estimation and camera motion estimation. As an illustrative example, COIN outperforms the state-of-the-art method by 33% in world joint position error (W-MPJPE) on the RICH dataset.
PDF ECCV 2024

点此查看论文截图

What to Preserve and What to Transfer: Faithful, Identity-Preserving Diffusion-based Hairstyle Transfer

Authors:Chaeyeon Chung, Sunghyun Park, Jeongho Kim, Jaegul Choo

Hairstyle transfer is a challenging task in the image editing field that modifies the hairstyle of a given face image while preserving its other appearance and background features. The existing hairstyle transfer approaches heavily rely on StyleGAN, which is pre-trained on cropped and aligned face images. Hence, they struggle to generalize under challenging conditions such as extreme variations of head poses or focal lengths. To address this issue, we propose a one-stage hairstyle transfer diffusion model, HairFusion, that applies to real-world scenarios. Specifically, we carefully design a hair-agnostic representation as the input of the model, where the original hair information is thoroughly eliminated. Next, we introduce a hair align cross-attention (Align-CA) to accurately align the reference hairstyle with the face image while considering the difference in their face shape. To enhance the preservation of the face image’s original features, we leverage adaptive hair blending during the inference, where the output’s hair regions are estimated by the cross-attention map in Align-CA and blended with non-hair areas of the face image. Our experimental results show that our method achieves state-of-the-art performance compared to the existing methods in preserving the integrity of both the transferred hairstyle and the surrounding features. The codes are available at https://github.com/cychungg/HairFusion.
PDF

点此查看论文截图

WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling

Authors:Shengpeng Ji, Ziyue Jiang, Xize Cheng, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang, Ruiqi Li, Ziang Zhang, Xiaoda Yang, Rongjie Huang, Yidi Jiang, Qian Chen, Siqi Zheng, Wen Wang, Zhou Zhao

Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.
PDF Working in progress. arXiv admin note: text overlap with arXiv:2402.12208

点此查看论文截图

GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models

Authors:Moreno D’Incà, Elia Peruzzo, Massimiliano Mancini, Xingqian Xu, Humphrey Shi, Nicu Sebe

Recent progress in Text-to-Image (T2I) generative models has enabled high-quality image generation. As performance and accessibility increase, these models are gaining significant attraction and popularity: ensuring their fairness and safety is a priority to prevent the dissemination and perpetuation of biases. However, existing studies in bias detection focus on closed sets of predefined biases (e.g., gender, ethnicity). In this paper, we propose a general framework to identify, quantify, and explain biases in an open set setting, i.e. without requiring a predefined set. This pipeline leverages a Large Language Model (LLM) to propose biases starting from a set of captions. Next, these captions are used by the target generative model for generating a set of images. Finally, Vision Question Answering (VQA) is leveraged for bias evaluation. We show two variations of this framework: OpenBias and GradBias. OpenBias detects and quantifies biases, while GradBias determines the contribution of individual prompt words on biases. OpenBias effectively detects both well-known and novel biases related to people, objects, and animals and highly aligns with existing closed-set bias detection methods and human judgment. GradBias shows that neutral words can significantly influence biases and it outperforms several baselines, including state-of-the-art foundation models. Code available here: https://github.com/Moreno98/GradBias.
PDF Under review. Code: https://github.com/Moreno98/GradBias

点此查看论文截图

CSGO: Content-Style Composition in Text-to-Image Generation

Authors:Peng Xing, Haofan Wang, Yanpeng Sun, Qixun Wang, Xu Bai, Hao Ai, Renyuan Huang, Zechao Li

The diffusion model has shown exceptional capabilities in controlled image generation, which has further fueled interest in image style transfer. Existing works mainly focus on training free-based methods (e.g., image inversion) due to the scarcity of specific data. In this study, we present a data construction pipeline for content-style-stylized image triplets that generates and automatically cleanses stylized data triplets. Based on this pipeline, we construct a dataset IMAGStyle, the first large-scale style transfer dataset containing 210k image triplets, available for the community to explore and research. Equipped with IMAGStyle, we propose CSGO, a style transfer model based on end-to-end training, which explicitly decouples content and style features employing independent feature injection. The unified CSGO implements image-driven style transfer, text-driven stylized synthesis, and text editing-driven stylized synthesis. Extensive experiments demonstrate the effectiveness of our approach in enhancing style control capabilities in image generation. Additional visualization and access to the source code can be located on the project page: \url{https://csgo-gen.github.io/}.
PDF

点此查看论文截图

ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model

Authors:Fangfu Liu, Wenqiang Sun, Hanyang Wang, Yikai Wang, Haowen Sun, Junliang Ye, Jun Zhang, Yueqi Duan

Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
PDF Project page: https://liuff19.github.io/ReconX

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录