2024-08-31 更新
WHISMA: A Speech-LLM to Perform Zero-shot Spoken Language Understanding
Authors:Mohan Li, Cong-Thanh Do, Simon Keizer, Youmna Farag, Svetlana Stoyanchev, Rama Doddipatla
Speech large language models (speech-LLMs) integrate speech and text-based foundation models to provide a unified framework for handling a wide range of downstream tasks. In this paper, we introduce WHISMA, a speech-LLM tailored for spoken language understanding (SLU) that demonstrates robust performance in various zero-shot settings. WHISMA combines the speech encoder from Whisper with the Llama-3 LLM, and is fine-tuned in a parameter-efficient manner on a comprehensive collection of SLU-related datasets. Our experiments show that WHISMA significantly improves the zero-shot slot filling performance on the SLURP benchmark, achieving a relative gain of 26.6% compared to the current state-of-the-art model. Furthermore, to evaluate WHISMA’s generalisation capabilities to unseen domains, we develop a new task-agnostic benchmark named SLU-GLUE. The evaluation results indicate that WHISMA outperforms an existing speech-LLM (Qwen-Audio) with a relative gain of 33.0%.
PDF accepted to SLT 2024
点此查看论文截图
Entropic Distribution Matching in Supervised Fine-tuning of LLMs: Less Overfitting and Better Diversity
Authors:Ziniu Li, Congliang Chen, Tian Xu, Zeyu Qin, Jiancong Xiao, Ruoyu Sun, Zhi-Quan Luo
Large language models rely on Supervised Fine-Tuning (SFT) to specialize in downstream tasks. Cross Entropy (CE) loss is the de facto choice in SFT, but it often leads to overfitting and limited output diversity due to its aggressive updates to the data distribution. This paper aim to address these issues by introducing the maximum entropy principle, which favors models with flatter distributions that still effectively capture the data. Specifically, we develop a new distribution matching method called GEM, which solves reverse Kullback-Leibler divergence minimization with an entropy regularizer. For the SFT of Llama-3-8B models, GEM outperforms CE in several aspects. First, when applied to the UltraFeedback dataset to develop general instruction-following abilities, GEM exhibits reduced overfitting, evidenced by lower perplexity and better performance on the IFEval benchmark. Furthermore, GEM enhances output diversity, leading to performance gains of up to 7 points on math reasoning and code generation tasks using best-of-n sampling, even without domain-specific data. Second, when fine-tuning with domain-specific datasets for math reasoning and code generation, GEM also shows less overfitting and improvements of up to 10 points compared with CE.
PDF
点此查看论文截图
GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models
Authors:Moreno D’Incà, Elia Peruzzo, Massimiliano Mancini, Xingqian Xu, Humphrey Shi, Nicu Sebe
Recent progress in Text-to-Image (T2I) generative models has enabled high-quality image generation. As performance and accessibility increase, these models are gaining significant attraction and popularity: ensuring their fairness and safety is a priority to prevent the dissemination and perpetuation of biases. However, existing studies in bias detection focus on closed sets of predefined biases (e.g., gender, ethnicity). In this paper, we propose a general framework to identify, quantify, and explain biases in an open set setting, i.e. without requiring a predefined set. This pipeline leverages a Large Language Model (LLM) to propose biases starting from a set of captions. Next, these captions are used by the target generative model for generating a set of images. Finally, Vision Question Answering (VQA) is leveraged for bias evaluation. We show two variations of this framework: OpenBias and GradBias. OpenBias detects and quantifies biases, while GradBias determines the contribution of individual prompt words on biases. OpenBias effectively detects both well-known and novel biases related to people, objects, and animals and highly aligns with existing closed-set bias detection methods and human judgment. GradBias shows that neutral words can significantly influence biases and it outperforms several baselines, including state-of-the-art foundation models. Code available here: https://github.com/Moreno98/GradBias.
PDF Under review. Code: https://github.com/Moreno98/GradBias
点此查看论文截图
VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation
Authors:Shiwei Wu, Joya Chen, Kevin Qinghong Lin, Qimeng Wang, Yan Gao, Qianli Xu, Tong Xu, Yao Hu, Enhong Chen, Mike Zheng Shou
A well-known dilemma in large vision-language models (e.g., GPT-4, LLaVA) is that while increasing the number of vision tokens generally enhances visual understanding, it also significantly raises memory and computational costs, especially in long-term, dense video frame streaming scenarios. Although learnable approaches like Q-Former and Perceiver Resampler have been developed to reduce the vision token burden, they overlook the context causally modeled by LLMs (i.e., key-value cache), potentially leading to missed visual cues when addressing user queries. In this paper, we introduce a novel approach to reduce vision compute by leveraging redundant vision tokens “skipping layers” rather than decreasing the number of vision tokens. Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video. Specifically, for each transformer layer, we learn to skip the computation for a high proportion (e.g., 80\%) of vision tokens, passing them directly to the next layer. This approach significantly enhances model efficiency, achieving approximately \textasciitilde42\% time and \textasciitilde30\% memory savings for the entire training. Moreover, our method reduces the computation in the context and avoid decreasing the vision tokens, thus preserving or even improving performance compared to the vanilla model. We conduct extensive experiments to demonstrate the effectiveness of VideoLLM-MoD, showing its state-of-the-art results on multiple benchmarks, including narration, forecasting, and summarization tasks in COIN, Ego4D, and Ego-Exo4D datasets.
PDF
点此查看论文截图
Assessing Large Language Models for Online Extremism Research: Identification, Explanation, and New Knowledge
Authors:Beidi Dong, Jin R. Lee, Ziwei Zhu, Balassubramanian Srinivasan
The United States has experienced a significant increase in violent extremism, prompting the need for automated tools to detect and limit the spread of extremist ideology online. This study evaluates the performance of Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-Trained Transformers (GPT) in detecting and classifying online domestic extremist posts. We collected social media posts containing “far-right” and “far-left” ideological keywords and manually labeled them as extremist or non-extremist. Extremist posts were further classified into one or more of five contributing elements of extremism based on a working definitional framework. The BERT model’s performance was evaluated based on training data size and knowledge transfer between categories. We also compared the performance of GPT 3.5 and GPT 4 models using different prompts: na\”ive, layperson-definition, role-playing, and professional-definition. Results showed that the best performing GPT models outperformed the best performing BERT models, with more detailed prompts generally yielding better results. However, overly complex prompts may impair performance. Different versions of GPT have unique sensitives to what they consider extremist. GPT 3.5 performed better at classifying far-left extremist posts, while GPT 4 performed better at classifying far-right extremist posts. Large language models, represented by GPT models, hold significant potential for online extremism classification tasks, surpassing traditional BERT models in a zero-shot setting. Future research should explore human-computer interactions in optimizing GPT models for extremist detection and classification tasks to develop more efficient (e.g., quicker, less effort) and effective (e.g., fewer errors or mistakes) methods for identifying extremist content.
PDF
点此查看论文截图
PromptSmooth: Certifying Robustness of Medical Vision-Language Models via Prompt Learning
Authors:Noor Hussein, Fahad Shamshad, Muzammal Naseer, Karthik Nandakumar
Medical vision-language models (Med-VLMs) trained on large datasets of medical image-text pairs and later fine-tuned for specific tasks have emerged as a mainstream paradigm in medical image analysis. However, recent studies have highlighted the susceptibility of these Med-VLMs to adversarial attacks, raising concerns about their safety and robustness. Randomized smoothing is a well-known technique for turning any classifier into a model that is certifiably robust to adversarial perturbations. However, this approach requires retraining the Med-VLM-based classifier so that it classifies well under Gaussian noise, which is often infeasible in practice. In this paper, we propose a novel framework called PromptSmooth to achieve efficient certified robustness of Med-VLMs by leveraging the concept of prompt learning. Given any pre-trained Med-VLM, PromptSmooth adapts it to handle Gaussian noise by learning textual prompts in a zero-shot or few-shot manner, achieving a delicate balance between accuracy and robustness, while minimizing the computational overhead. Moreover, PromptSmooth requires only a single model to handle multiple noise levels, which substantially reduces the computational cost compared to traditional methods that rely on training a separate model for each noise level. Comprehensive experiments based on three Med-VLMs and across six downstream datasets of various imaging modalities demonstrate the efficacy of PromptSmooth. Our code and models are available at https://github.com/nhussein/promptsmooth.
PDF Accepted to MICCAI 2024