2024-08-28 更新
Empowering Pre-Trained Language Models for Spatio-Temporal Forecasting via Decoupling Enhanced Discrete Reprogramming
Authors:Hao Wang, Jindong Han, Wei Fan, Hao Liu
Spatio-temporal time series forecasting plays a critical role in various real-world applications, such as transportation optimization, energy management, and climate analysis. The recent advancements in Pre-trained Language Models (PLMs) have inspired efforts to reprogram these models for time series forecasting tasks, by leveraging their superior reasoning and generalization capabilities. However, existing approaches fall short in handling complex spatial inter-series dependencies and intrinsic intra-series frequency components, limiting their spatio-temporal forecasting performance. Moreover, the linear mapping of continuous time series to a compressed subset vocabulary in reprogramming constrains the spatio-temporal semantic expressivity of PLMs and may lead to potential information bottleneck. To overcome the above limitations, we propose \textsc{RePST}, a tailored PLM reprogramming framework for spatio-temporal forecasting. The key insight of \textsc{RePST} is to decouple the spatio-temporal dynamics in the frequency domain, allowing better alignment with the PLM text space. Specifically, we first decouple spatio-temporal data in Fourier space and devise a structural diffusion operator to obtain temporal intrinsic and spatial diffusion signals, making the dynamics more comprehensible and predictable for PLMs. To avoid information bottleneck from a limited vocabulary, we further propose a discrete reprogramming strategy that selects relevant discrete textual information from an expanded vocabulary space in a differentiable manner. Extensive experiments on four real-world datasets show that our proposed approach significantly outperforms state-of-the-art spatio-temporal forecasting models, particularly in data-scarce scenarios.
PDF
点此查看论文截图
Advancing Adversarial Suffix Transfer Learning on Aligned Large Language Models
Authors:Hongfu Liu, Yuxi Xie, Ye Wang, Michael Shieh
Language Language Models (LLMs) face safety concerns due to potential misuse by malicious users. Recent red-teaming efforts have identified adversarial suffixes capable of jailbreaking LLMs using the gradient-based search algorithm Greedy Coordinate Gradient (GCG). However, GCG struggles with computational inefficiency, limiting further investigations regarding suffix transferability and scalability across models and data. In this work, we bridge the connection between search efficiency and suffix transferability. We propose a two-stage transfer learning framework, DeGCG, which decouples the search process into behavior-agnostic pre-searching and behavior-relevant post-searching. Specifically, we employ direct first target token optimization in pre-searching to facilitate the search process. We apply our approach to cross-model, cross-data, and self-transfer scenarios. Furthermore, we introduce an interleaved variant of our approach, i-DeGCG, which iteratively leverages self-transferability to accelerate the search process. Experiments on HarmBench demonstrate the efficiency of our approach across various models and domains. Notably, our i-DeGCG outperforms the baseline on Llama2-chat-7b with ASRs of $43.9$ ($+22.2$) and $39.0$ ($+19.5$) on valid and test sets, respectively. Further analysis on cross-model transfer indicates the pivotal role of first target token optimization in leveraging suffix transferability for efficient searching.
PDF 11 pages, 4 figures
点此查看论文截图
Writing in the Margins: Better Inference Pattern for Long Context Retrieval
Authors:Melisa Russak, Umar Jamil, Christopher Bryant, Kiran Kamble, Axel Magnuson, Mateusz Russak, Waseem AlShikh
In this paper, we introduce Writing in the Margins (WiM), a new inference pattern for Large Language Models designed to optimize the handling of long input sequences in retrieval-oriented tasks. This approach leverages the chunked prefill of the key-value cache to perform segment-wise inference, which enables efficient processing of extensive contexts along with the generation and classification of intermediate information (“margins”) that guide the model towards specific tasks. This method increases computational overhead marginally while significantly enhancing the performance of off-the-shelf models without the need for fine-tuning. Specifically, we observe that WiM provides an average enhancement of 7.5% in accuracy for reasoning skills (HotpotQA, MultiHop-RAG) and more than a 30.0% increase in the F1-score for aggregation tasks (CWE). Additionally, we show how the proposed pattern fits into an interactive retrieval design that provides end-users with ongoing updates about the progress of context processing, and pinpoints the integration of relevant information into the final response. We release our implementation of WiM using Hugging Face Transformers library at https://github.com/writer/writing-in-the-margins.
PDF
点此查看论文截图
SpikingSSMs: Learning Long Sequences with Sparse and Parallel Spiking State Space Models
Authors:Shuaijie Shen, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo Zhang, Luziwei Leng
Known as low energy consumption networks, spiking neural networks (SNNs) have gained a lot of attention within the past decades. While SNNs are increasing competitive with artificial neural networks (ANNs) for vision tasks, they are rarely used for long sequence tasks, despite their intrinsic temporal dynamics. In this work, we develop spiking state space models (SpikingSSMs) for long sequence learning by leveraging on the sequence learning abilities of state space models (SSMs). Inspired by dendritic neuron structure, we hierarchically integrate neuronal dynamics with the original SSM block, meanwhile realizing sparse synaptic computation. Furthermore, to solve the conflict of event-driven neuronal dynamics with parallel computing, we propose a light-weight surrogate dynamic network which accurately predicts the after-reset membrane potential and compatible to learnable thresholds, enabling orders of acceleration in training speed compared with conventional iterative methods. On the long range arena benchmark task, SpikingSSM achieves competitive performance to state-of-the-art SSMs meanwhile realizing on average 90\% of network sparsity. On language modeling, our network significantly surpasses existing spiking large language models (spikingLLMs) on the WikiText-103 dataset with only a third of the model size, demonstrating its potential as backbone architecture for low computation cost LLMs.
PDF
点此查看论文截图
Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning
Authors:Sakhinana Sagar Srinivas, Venkataramana Runkana
In the field of chemistry, the objective is to create novel molecules with desired properties, facilitating accurate property predictions for applications such as material design and drug screening. However, existing graph deep learning methods face limitations that curb their expressive power. To address this, we explore the integration of vast molecular domain knowledge from Large Language Models (LLMs) with the complementary strengths of Graph Neural Networks (GNNs) to enhance performance in property prediction tasks. We introduce a Multi-Modal Fusion (MMF) framework that synergistically harnesses the analytical prowess of GNNs and the linguistic generative and predictive abilities of LLMs, thereby improving accuracy and robustness in predicting molecular properties. Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting. Furthermore, our approach effectively addresses distributional shifts, a common challenge in real-world applications, and showcases the efficacy of learning cross-modal representations, surpassing state-of-the-art baselines on benchmark datasets for property prediction tasks.
PDF Paper Accepted at Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023
点此查看论文截图
AgentMonitor: A Plug-and-Play Framework for Predictive and Secure Multi-Agent Systems
Authors:Chi-Min Chan, Jianxuan Yu, Weize Chen, Chunyang Jiang, Xinyu Liu, Weijie Shi, Zhiyuan Liu, Wei Xue, Yike Guo
The rapid advancement of large language models (LLMs) has led to the rise of LLM-based agents. Recent research shows that multi-agent systems (MAS), where each agent plays a specific role, can outperform individual LLMs. However, configuring an MAS for a task remains challenging, with performance only observable post-execution. Inspired by scaling laws in LLM development, we investigate whether MAS performance can be predicted beforehand. We introduce AgentMonitor, a framework that integrates at the agent level to capture inputs and outputs, transforming them into statistics for training a regression model to predict task performance. Additionally, it can further apply real-time corrections to address security risks posed by malicious agents, mitigating negative impacts and enhancing MAS security. Experiments demonstrate that an XGBoost model achieves a Spearman correlation of 0.89 in-domain and 0.58 in more challenging scenarios. Furthermore, using AgentMonitor reduces harmful content by 6.2% and increases helpful content by 1.8% on average, enhancing safety and reliability. Code is available at \url{https://github.com/chanchimin/AgentMonitor}.
PDF
点此查看论文截图
DocLayLLM: An Efficient and Effective Multi-modal Extension of Large Language Models for Text-rich Document Understanding
Authors:Wenhui Liao, Jiapeng Wang, Hongliang Li, Chengyu Wang, Jun Huang, Lianwen Jin
Text-rich document understanding (TDU) refers to analyzing and comprehending documents containing substantial textual content. With the rapid evolution of large language models (LLMs), they have been widely leveraged for TDU due to their remarkable versatility and generalization. In this paper, we introduce DocLayLLM, an efficient and effective multi-modal extension of LLMs specifically designed for TDU. By integrating visual patch tokens and 2D positional tokens into LLMs and encoding the document content using the LLMs themselves, we fully take advantage of the document comprehension capability of LLMs and enhance their perception of OCR information. We have also deeply considered the role of the chain-of-thought (CoT) and innovatively proposed the techniques of CoT Pre-training and CoT Annealing. Our DocLayLLM can achieve remarkable performances with lightweight training settings, showcasing its efficiency and effectiveness. Experimental results demonstrate that our DocLayLLM surpasses existing OCR-dependent methods and also outperforms OCR-free competitors.
PDF
点此查看论文截图
Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation
Authors:Jian Hu, Jiayi Lin, Junchi Yan, Shaogang Gong
Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in https://lwpyh.github.io/ProMaC/.
PDF We propose using hallucinations as prior knowledge to extract and validate task-related information, which helps generate instance-specific prompts for reducing reliance on manual prompts in promptable segmentation
点此查看论文截图
LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet
Authors:Nathaniel Li, Ziwen Han, Ian Steneker, Willow Primack, Riley Goodside, Hugh Zhang, Zifan Wang, Cristina Menghini, Summer Yue
Recent large language model (LLM) defenses have greatly improved models’ ability to refuse harmful queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities, exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens of commercial red teaming engagements, supporting research towards stronger LLM defenses.
PDF
点此查看论文截图
The Mamba in the Llama: Distilling and Accelerating Hybrid Models
Authors:Junxiong Wang, Daniele Paliotta, Avner May, Alexander M. Rush, Tri Dao
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best instruction-tuned linear RNN model.
PDF Code is open-sourced at https://github.com/jxiw/MambaInLlama
点此查看论文截图
Generative Verifiers: Reward Modeling as Next-Token Prediction
Authors:Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, Rishabh Agarwal
Verifiers or reward models are often used to enhance the reasoning performance of large language models (LLMs). A common approach is the Best-of-N method, where N candidate solutions generated by the LLM are ranked by a verifier, and the best one is selected. While LLM-based verifiers are typically trained as discriminative classifiers to score solutions, they do not utilize the text generation capabilities of pretrained LLMs. To overcome this limitation, we instead propose training verifiers using the ubiquitous next-token prediction objective, jointly on verification and solution generation. Compared to standard verifiers, such generative verifiers (GenRM) can benefit from several advantages of LLMs: they integrate seamlessly with instruction tuning, enable chain-of-thought reasoning, and can utilize additional inference-time compute via majority voting for better verification. We demonstrate that when using Gemma-based verifiers on algorithmic and grade-school math reasoning tasks, GenRM outperforms discriminative verifiers and LLM-as-a-Judge, showing a 16-64% improvement in the percentage of problems solved with Best-of-N. Furthermore, we show that GenRM scales favorably across dataset size, model capacity, and inference-time compute.
PDF