检测/分割/跟踪


2024-08-28 更新

A Survey of Camouflaged Object Detection and Beyond

Authors:Fengyang Xiao, Sujie Hu, Yuqi Shen, Chengyu Fang, Jinfa Huang, Chunming He, Longxiang Tang, Ziyun Yang, Xiu Li

Camouflaged Object Detection (COD) refers to the task of identifying and segmenting objects that blend seamlessly into their surroundings, posing a significant challenge for computer vision systems. In recent years, COD has garnered widespread attention due to its potential applications in surveillance, wildlife conservation, autonomous systems, and more. While several surveys on COD exist, they often have limitations in terms of the number and scope of papers covered, particularly regarding the rapid advancements made in the field since mid-2023. To address this void, we present the most comprehensive review of COD to date, encompassing both theoretical frameworks and practical contributions to the field. This paper explores various COD methods across four domains, including both image-level and video-level solutions, from the perspectives of traditional and deep learning approaches. We thoroughly investigate the correlations between COD and other camouflaged scenario methods, thereby laying the theoretical foundation for subsequent analyses. Beyond object-level detection, we also summarize extended methods for instance-level tasks, including camouflaged instance segmentation, counting, and ranking. Additionally, we provide an overview of commonly used benchmarks and evaluation metrics in COD tasks, conducting a comprehensive evaluation of deep learning-based techniques in both image and video domains, considering both qualitative and quantitative performance. Finally, we discuss the limitations of current COD models and propose 9 promising directions for future research, focusing on addressing inherent challenges and exploring novel, meaningful technologies. For those interested, a curated list of COD-related techniques, datasets, and additional resources can be found at https://github.com/ChunmingHe/awesome-concealed-object-segmentation
PDF 26 pages, 10 figures, 8 tables

点此查看论文截图

Physically Feasible Semantic Segmentation

Authors:Shamik Basu, Christos Sakaridis, Luc Van Gool

State-of-the-art semantic segmentation models are typically optimized in a data-driven fashion, minimizing solely per-pixel classification objectives on their training data. This purely data-driven paradigm often leads to absurd segmentations, especially when the domain of input images is shifted from the one encountered during training. For instance, state-of-the-art models may assign the label road'' to a segment which is located above a segment that is respectively labeled assky’’, although our knowledge of the physical world dictates that such a configuration is not feasible for images captured by forward-facing upright cameras. Our method, Physically Feasible Semantic Segmentation (PhyFea), extracts explicit physical constraints that govern spatial class relations from the training sets of semantic segmentation datasets and enforces a differentiable loss function that penalizes violations of these constraints to promote prediction feasibility. PhyFea yields significant performance improvements in mIoU over each state-of-the-art network we use as baseline across ADE20K, Cityscapes and ACDC, notably a $1.5\%$ improvement on ADE20K and a $2.1\%$ improvement on ACDC.
PDF

点此查看论文截图

MROVSeg: Breaking the Resolution Curse of Vision-Language Models in Open-Vocabulary Semantic Segmentation

Authors:Yuanbing Zhu, Bingke Zhu, Zhen Chen, Huan Xu, Ming Tang, Jinqiao Wang

Open-vocabulary semantic segmentation aims to segment and recognize semantically meaningful regions based on text-based descriptions during inference. A typical solution to address this task is to leverage powerful vision-language models (VLMs), such as CLIP, to bridge the gap between open- and close-vocabulary recognition. As VLMs are usually pretrained with low-resolution images (e.g. $224\times224$), most previous methods operate only on downscaled images. We question this design as low resolution features often fail to preserve fine details. Although employing additional image backbones for high-resolution inputs can mitigate this issue, it may also introduce significant computation overhead. Therefore, we propose MROVSeg, a multi-resolution training framework for open-vocabulary semantic segmentation with a single pretrained CLIP backbone, that uses sliding windows to slice the high-resolution input into uniform patches, each matching the input size of the well-trained image encoder. Its key components include a Multi-Res Adapter, which restores the spatial geometry and grasps local-global correspondences across patches by learnable convolutional and scale attention layers. To achieve accurate segmentation, we introduce Multi-grained Masked Attention scheme to aggregate multi-grained semantics by performing cross-attention between object queries and multi-resolution CLIP features within the region of interests. Through comprehensive experiments, we demonstrate the superiority of MROVSeg on well-established open-vocabulary semantic segmentation benchmarks, particularly for high-resolution inputs, establishing new standards for open-vocabulary semantic segmentation.
PDF Technical report

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录