视频生成


2024-08-27 更新

TVG: A Training-free Transition Video Generation Method with Diffusion Models

Authors:Rui Zhang, Yaosen Chen, Yuegen Liu, Wei Wang, Xuming Wen, Hongxia Wang

Transition videos play a crucial role in media production, enhancing the flow and coherence of visual narratives. Traditional methods like morphing often lack artistic appeal and require specialized skills, limiting their effectiveness. Recent advances in diffusion model-based video generation offer new possibilities for creating transitions but face challenges such as poor inter-frame relationship modeling and abrupt content changes. We propose a novel training-free Transition Video Generation (TVG) approach using video-level diffusion models that addresses these limitations without additional training. Our method leverages Gaussian Process Regression ($\mathcal{GPR}$) to model latent representations, ensuring smooth and dynamic transitions between frames. Additionally, we introduce interpolation-based conditional controls and a Frequency-aware Bidirectional Fusion (FBiF) architecture to enhance temporal control and transition reliability. Evaluations of benchmark datasets and custom image pairs demonstrate the effectiveness of our approach in generating high-quality smooth transition videos. The code are provided in https://sobeymil.github.io/tvg.com.
PDF

点此查看论文截图

TalkLoRA: Low-Rank Adaptation for Speech-Driven Animation

Authors:Jack Saunders, Vinay Namboodiri

Speech-driven facial animation is important for many applications including TV, film, video games, telecommunication and AR/VR. Recently, transformers have been shown to be extremely effective for this task. However, we identify two issues with the existing transformer-based models. Firstly, they are difficult to adapt to new personalised speaking styles and secondly, they are slow to run for long sentences due to the quadratic complexity of the transformer. We propose TalkLoRA to address both of these issues. TalkLoRA uses Low-Rank Adaptation to effectively and efficiently adapt to new speaking styles, even with limited data. It does this by training an adaptor with a small number of parameters for each subject. We also utilise a chunking strategy to reduce the complexity of the underlying transformer, allowing for long sentences at inference time. TalkLoRA can be applied to any transformer-based speech-driven animation method. We perform extensive experiments to show that TalkLoRA archives state-of-the-art style adaptation and that it allows for an order-of-complexity reduction in inference times without sacrificing quality. We also investigate and provide insights into the hyperparameter selection for LoRA fine-tuning of speech-driven facial animation models.
PDF

点此查看论文截图

SurGen: Text-Guided Diffusion Model for Surgical Video Generation

Authors:Joseph Cho, Samuel Schmidgall, Cyril Zakka, Mrudang Mathur, Rohan Shad, William Hiesinger

Diffusion-based video generation models have made significant strides, producing outputs with improved visual fidelity, temporal coherence, and user control. These advancements hold great promise for improving surgical education by enabling more realistic, diverse, and interactive simulation environments. In this study, we introduce SurGen, a text-guided diffusion model tailored for surgical video synthesis, producing the highest resolution and longest duration videos among existing surgical video generation models. We validate the visual and temporal quality of the outputs using standard image and video generation metrics. Additionally, we assess their alignment to the corresponding text prompts through a deep learning classifier trained on surgical data. Our results demonstrate the potential of diffusion models to serve as valuable educational tools for surgical trainees.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录