LLM


2024-08-27 更新

Latent Space Disentanglement in Diffusion Transformers Enables Zero-shot Fine-grained Semantic Editing

Authors:Zitao Shuai, Chenwei Wu, Zhengxu Tang, Bowen Song, Liyue Shen

Diffusion Transformers (DiTs) have achieved remarkable success in diverse and high-quality text-to-image(T2I) generation. However, how text and image latents individually and jointly contribute to the semantics of generated images, remain largely unexplored. Through our investigation of DiT’s latent space, we have uncovered key findings that unlock the potential for zero-shot fine-grained semantic editing: (1) Both the text and image spaces in DiTs are inherently decomposable. (2) These spaces collectively form a disentangled semantic representation space, enabling precise and fine-grained semantic control. (3) Effective image editing requires the combined use of both text and image latent spaces. Leveraging these insights, we propose a simple and effective Extract-Manipulate-Sample (EMS) framework for zero-shot fine-grained image editing. Our approach first utilizes a multi-modal Large Language Model to convert input images and editing targets into text descriptions. We then linearly manipulate text embeddings based on the desired editing degree and employ constrained score distillation sampling to manipulate image embeddings. We quantify the disentanglement degree of the latent space of diffusion models by proposing a new metric. To evaluate fine-grained editing performance, we introduce a comprehensive benchmark incorporating both human annotations, manual evaluation, and automatic metrics. We have conducted extensive experimental results and in-depth analysis to thoroughly uncover the semantic disentanglement properties of the diffusion transformer, as well as the effectiveness of our proposed method. Our annotated benchmark dataset is publicly available at https://anonymous.com/anonymous/EMS-Benchmark, facilitating reproducible research in this domain.
PDF

点此查看论文截图

Draw Like an Artist: Complex Scene Generation with Diffusion Model via Composition, Painting, and Retouching

Authors:Minghao Liu, Le Zhang, Yingjie Tian, Xiaochao Qu, Luoqi Liu, Ting Liu

Recent advances in text-to-image diffusion models have demonstrated impressive capabilities in image quality. However, complex scene generation remains relatively unexplored, and even the definition of `complex scene’ itself remains unclear. In this paper, we address this gap by providing a precise definition of complex scenes and introducing a set of Complex Decomposition Criteria (CDC) based on this definition. Inspired by the artists painting process, we propose a training-free diffusion framework called Complex Diffusion (CxD), which divides the process into three stages: composition, painting, and retouching. Our method leverages the powerful chain-of-thought capabilities of large language models (LLMs) to decompose complex prompts based on CDC and to manage composition and layout. We then develop an attention modulation method that guides simple prompts to specific regions to complete the complex scene painting. Finally, we inject the detailed output of the LLM into a retouching model to enhance the image details, thus implementing the retouching stage. Extensive experiments demonstrate that our method outperforms previous SOTA approaches, significantly improving the generation of high-quality, semantically consistent, and visually diverse images for complex scenes, even with intricate prompts.
PDF

点此查看论文截图

DuDoCROP: Dual-Domain CLIP-Assisted Residual Optimization Perception Model for CT Metal Artifact Reduction

Authors:Xinrui Zhang, Ailong Cai, Lei Li, Bin Yan

Metal artifacts in computed tomography (CT) imaging pose significant challenges to accurate clinical diagnosis. The presence of high-density metallic implants results in artifacts that deteriorate image quality, manifesting in the forms of streaking, blurring, or beam hardening effects, etc. Nowadays, various deep learning-based approaches, particularly generative models, have been proposed for metal artifact reduction (MAR). However, these methods have limited perception ability in the diverse morphologies of different metal implants with artifacts, which may generate spurious anatomical structures and exhibit inferior generalization capability. To address the issues, we leverage visual-language model (VLM) to identify these morphological features and introduce them into a dual-domain CLIP-assisted residual optimization perception model (DuDoCROP) for MAR. Specifically, a dual-domain CLIP (DuDoCLIP) is fine-tuned on the image domain and sinogram domain using contrastive learning to extract semantic descriptions from anatomical structures and metal artifacts. Subsequently, a diffusion model is guided by the embeddings of DuDoCLIP, thereby enabling the dual-domain prior generation. Additionally, we design prompt engineering for more precise image-text descriptions that can enhance the model’s perception capability. Then, a downstream task is devised for the one-step residual optimization and integration of dual-domain priors, while incorporating raw data fidelity. Ultimately, a new perceptual indicator is proposed to validate the model’s perception and generation performance. With the assistance of DuDoCLIP, our DuDoCROP exhibits at least 63.7% higher generalization capability compared to the baseline model. Numerical experiments demonstrate that the proposed method can generate more realistic image structures and outperform other SOTA approaches both qualitatively and quantitatively.
PDF 14 pages, 18 figures

点此查看论文截图

Language-specific Calibration for Pruning Multilingual Language Models

Authors:Simon Kurz, Zhixue Zhao, Jian-Jia Chen, Lucie Flek

Recent advances in large language model (LLM) pruning have shown state-of-the-art compression results in post-training and retraining-free settings while maintaining high predictive performance. However, such research mainly considers calibrating pruning using English text, despite the multilingual nature of modern LLMs and their frequent uses in non-English languages. In this paper, we set out to explore effective strategies for calibrating the pruning of multilingual language models. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse tasks, models, and state-of-the-art pruning techniques. Our results present practical suggestions, for example, calibrating in the target language can efficiently yield lower perplexity, but does not necessarily benefit downstream tasks. Our further analysis experiments unveil that calibration in the target language mainly contributes to preserving language-specific features related to fluency and coherence, but might not contribute to capturing language-agnostic features such as language understanding and reasoning. Last, we provide practical recommendations for future practitioners.
PDF

点此查看论文截图

Evaluating Large Language Models on Spatial Tasks: A Multi-Task Benchmarking Study

Authors:Liuchang Xu Shuo Zhao, Qingming Lin, Luyao Chen, Qianqian Luo, Sensen Wu, Xinyue Ye, Hailin Feng, Zhenhong Du

The advent of large language models such as ChatGPT, Gemini, and others has underscored the importance of evaluating their diverse capabilities, ranging from natural language understanding to code generation. However, their performance on spatial tasks has not been comprehensively assessed. This study addresses this gap by introducing a novel multi-task spatial evaluation dataset, designed to systematically explore and compare the performance of several advanced models on spatial tasks. The dataset encompasses twelve distinct task types, including spatial understanding and path planning, each with verified, accurate answers. We evaluated multiple models, including OpenAI’s gpt-3.5-turbo, gpt-4o, and ZhipuAI’s glm-4, through a two-phase testing approach. Initially, we conducted zero-shot testing, followed by categorizing the dataset by difficulty and performing prompt tuning tests. Results indicate that gpt-4o achieved the highest overall accuracy in the first phase, with an average of 71.3%. Although moonshot-v1-8k slightly underperformed overall, it surpassed gpt-4o in place name recognition tasks. The study also highlights the impact of prompt strategies on model performance in specific tasks. For example, the Chain-of-Thought (COT) strategy increased gpt-4o’s accuracy in path planning from 12.4% to 87.5%, while a one-shot strategy enhanced moonshot-v1-8k’s accuracy in mapping tasks from 10.1% to 76.3%.
PDF

点此查看论文截图

Grounded Multi-Hop VideoQA in Long-Form Egocentric Videos

Authors:Qirui Chen, Shangzhe Di, Weidi Xie

This paper considers the problem of Multi-Hop Video Question Answering (MH-VidQA) in long-form egocentric videos. This task not only requires to answer visual questions, but also to localize multiple relevant time intervals within the video as visual evidences. We develop an automated pipeline to create multi-hop question-answering pairs with associated temporal evidence, enabling to construct a large-scale dataset for instruction-tuning. To monitor the progress of this new task, we further curate a high-quality benchmark, MultiHop-EgoQA, with careful manual verification and refinement. Experimental results reveal that existing multi-modal systems exhibit inadequate multi-hop grounding and reasoning abilities, resulting in unsatisfactory performance. We then propose a novel architecture, termed as Grounding Scattered Evidence with Large Language Model (GeLM), that enhances multi-modal large language models (MLLMs) by incorporating a grounding module to retrieve temporal evidence from videos using flexible grounding tokens. Trained on our visual instruction data, GeLM demonstrates improved multi-hop grounding and reasoning capabilities, setting a new baseline for this challenging task. Furthermore, when trained on third-person view videos, the same architecture also achieves state-of-the-art performance on the single-hop VidQA benchmark, ActivityNet-RTL, demonstrating its effectiveness.
PDF

点此查看论文截图

A Practitioner’s Guide to Continual Multimodal Pretraining

Authors:Karsten Roth, Vishaal Udandarao, Sebastian Dziadzio, Ameya Prabhu, Mehdi Cherti, Oriol Vinyals, Olivier Hénaff, Samuel Albanie, Matthias Bethge, Zeynep Akata

Multimodal foundation models serve numerous applications at the intersection of vision and language. Still, despite being pretrained on extensive data, they become outdated over time. To keep models updated, research into continual pretraining mainly explores scenarios with either (1) infrequent, indiscriminate updates on large-scale new data, or (2) frequent, sample-level updates. However, practical model deployment often operates in the gap between these two limit cases, as real-world applications often demand adaptation to specific subdomains, tasks or concepts — spread over the entire, varying life cycle of a model. In this work, we complement current perspectives on continual pretraining through a research test bed as well as provide comprehensive guidance for effective continual model updates in such scenarios. We first introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements, constructed over 63 datasets with diverse visual and semantic coverage. Using FoMo-in-Flux, we explore the complex landscape of practical continual pretraining through multiple perspectives: (1) A data-centric investigation of data mixtures and stream orderings that emulate real-world deployment situations, (2) a method-centric investigation ranging from simple fine-tuning and traditional continual learning strategies to parameter-efficient updates and model merging, (3) meta learning rate schedules and mechanistic design choices, and (4) the influence of model and compute scaling. Together, our insights provide a practitioner’s guide to continual multimodal pretraining for real-world deployment. Our benchmark and code is here: https://github.com/ExplainableML/fomo_in_flux.
PDF Technical Report. 52 pages

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录