视频理解


2024-08-16 更新

Towards Event-oriented Long Video Understanding

Authors:Yifan Du, Kun Zhou, Yuqi Huo, Yifan Li, Wayne Xin Zhao, Haoyu Lu, Zijia Zhao, Bingning Wang, Weipeng Chen, Ji-Rong Wen

With the rapid development of video Multimodal Large Language Models (MLLMs), numerous benchmarks have been proposed to assess their video understanding capability. However, due to the lack of rich events in the videos, these datasets may suffer from the short-cut bias that the answers can be deduced from a few frames, without the need to watch the entire video. To address this issue, we introduce Event-Bench, an event-oriented long video understanding benchmark built on existing datasets and human annotations. Event-Bench includes six event-related tasks and 2,190 test instances to comprehensively evaluate video event understanding ability. Additionally, we propose Video Instruction Merging~(VIM), a cost-effective method that enhances video MLLMs using merged, event-intensive video instructions, addressing the scarcity of human-annotated, event-intensive data. Extensive experiments show that the best-performing model, GPT-4o, achieves an overall accuracy of 53.33, significantly outperforming the best open-source model by 41.42%. Leveraging an effective instruction synthesis method and an adaptive model architecture, VIM surpasses both state-of-the-art open-source models and GPT-4V on the Event-Bench. All code, data, and models are publicly available at https://github.com/RUCAIBox/Event-Bench.
PDF Work on progress

点此查看论文截图

MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding

Authors:Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahua Lin, Kai Chen

The advent of large vision-language models (LVLMs) has spurred research into their applications in multi-modal contexts, particularly in video understanding. Traditional VideoQA benchmarks, despite providing quantitative metrics, often fail to encompass the full spectrum of video content and inadequately assess models’ temporal comprehension. To address these limitations, we introduce MMBench-Video, a quantitative benchmark designed to rigorously evaluate LVLMs’ proficiency in video understanding. MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases. The benchmark is meticulously crafted to probe the models’ temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy. We employ GPT-4 for automated assessment, demonstrating superior accuracy and robustness over earlier LLM-based evaluations. Utilizing MMBench-Video, we have conducted comprehensive evaluations that include both proprietary and open-source LVLMs for images and videos. MMBench-Video stands as a valuable resource for the research community, facilitating improved evaluation of LVLMs and catalyzing progress in the field of video understanding. The evalutation code of MMBench-Video will be integrated into VLMEvalKit: https://github.com/open-compass/VLMEvalKit.
PDF

点此查看论文截图

Zero-Shot Long-Form Video Understanding through Screenplay

Authors:Yongliang Wu, Bozheng Li, Jiawang Cao, Wenbo Zhu, Yi Lu, Weiheng Chi, Chuyun Xie, Haolin Zheng, Ziyue Su, Jay Wu, Xu Yang

The Long-form Video Question-Answering task requires the comprehension and analysis of extended video content to respond accurately to questions by utilizing both temporal and contextual information. In this paper, we present MM-Screenplayer, an advanced video understanding system with multi-modal perception capabilities that can convert any video into textual screenplay representations. Unlike previous storytelling methods, we organize video content into scenes as the basic unit, rather than just visually continuous shots. Additionally, we developed a ``Look Back’’ strategy to reassess and validate uncertain information, particularly targeting breakpoint mode. MM-Screenplayer achieved highest score in the CVPR’2024 LOng-form VidEo Understanding (LOVEU) Track 1 Challenge, with a global accuracy of 87.5% and a breakpoint accuracy of 68.8%.
PDF Highest Score Award to the CVPR’2024 LOVEU Track 1 Challenge

点此查看论文截图

VideoMambaPro: A Leap Forward for Mamba in Video Understanding

Authors:Hui Lu, Albert Ali Salah, Ronald Poppe

Video understanding requires the extraction of rich spatio-temporal representations, which transformer models achieve through self-attention. Unfortunately, self-attention poses a computational burden. In NLP, Mamba has surfaced as an efficient alternative for transformers. However, Mamba’s successes do not trivially extend to computer vision tasks, including those in video analysis. In this paper, we theoretically analyze the differences between self-attention and Mamba. We identify two limitations in Mamba’s token processing: historical decay and element contradiction. We propose VideoMambaPro (VMP) that solves the identified limitations by adding masked backward computation and elemental residual connections to a VideoMamba backbone. VideoMambaPro shows state-of-the-art video action recognition performance compared to transformer models, and surpasses VideoMamba by clear margins: 7.9% and 8.1% top-1 on Kinetics-400 and Something-Something V2, respectively. Our VideoMambaPro-M model achieves 91.9% top-1 on Kinetics-400, only 0.2% below InternVideo2-6B but with only 1.2% of its parameters. The combination of high performance and efficiency makes VideoMambaPro an interesting alternative for transformer models.
PDF

点此查看论文截图

EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting

Authors:Daiwei Zhang, Gengyan Li, Jiajie Li, Mickaël Bressieux, Otmar Hilliges, Marc Pollefeys, Luc Van Gool, Xi Wang

Human activities are inherently complex, and even simple household tasks involve numerous object interactions. To better understand these activities and behaviors, it is crucial to model their dynamic interactions with the environment. The recent availability of affordable head-mounted cameras and egocentric data offers a more accessible and efficient means to understand dynamic human-object interactions in 3D environments. However, most existing methods for human activity modeling either focus on reconstructing 3D models of hand-object or human-scene interactions or on mapping 3D scenes, neglecting dynamic interactions with objects. The few existing solutions often require inputs from multiple sources, including multi-camera setups, depth-sensing cameras, or kinesthetic sensors. To this end, we introduce EgoGaussian, the first method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone. We leverage the uniquely discrete nature of Gaussian Splatting and segment dynamic interactions from the background. Our approach employs a clip-level online learning pipeline that leverages the dynamic nature of human activities, allowing us to reconstruct the temporal evolution of the scene in chronological order and track rigid object motion. Additionally, our method automatically segments object and background Gaussians, providing 3D representations for both static scenes and dynamic objects. EgoGaussian outperforms previous NeRF and Dynamic Gaussian methods in challenging in-the-wild videos and we also qualitatively demonstrate the high quality of the reconstructed models.
PDF

点此查看论文截图

InfiniBench: A Comprehensive Benchmark for Large Multimodal Models in Very Long Video Understanding

Authors:Kirolos Ataallah, Chenhui Gou, Eslam Abdelrahman, Khushbu Pahwa, Jian Ding, Mohamed Elhoseiny

Understanding long videos, ranging from tens of minutes to several hours, presents unique challenges in video comprehension. Despite the increasing importance of long-form video content, existing benchmarks primarily focus on shorter clips. To address this gap, we introduce InfiniBench a comprehensive benchmark for very long video understanding which presents 1)The longest video duration, averaging 76.34 minutes; 2) The largest number of question-answer pairs, 108.2K; 3) Diversity in questions that examine nine different skills and include both multiple-choice questions and open-ended questions; 4) Humancentric, as the video sources come from movies and daily TV shows, with specific human-level question designs such as Movie Spoiler Questions that require critical thinking and comprehensive understanding. Using InfiniBench, we comprehensively evaluate existing Large MultiModality Models (LMMs) on each skill, including the commercial model Gemini 1.5 Flash and the open-source models. The evaluation shows significant challenges in our benchmark.Our results show that the best AI models such Gemini struggles to perform well with 42.72% average accuracy and 2.71 out of 5 average score. We hope this benchmark will stimulate the LMMs community towards long video and human-level understanding. Our benchmark can be accessed at https://vision-cair.github.io/InfiniBench/
PDF 16 page ,17 figures

点此查看论文截图

Hypergraph Multi-modal Large Language Model: Exploiting EEG and Eye-tracking Modalities to Evaluate Heterogeneous Responses for Video Understanding

Authors:Minghui Wu, Chenxu Zhao, Anyang Su, Donglin Di, Tianyu Fu, Da An, Min He, Ya Gao, Meng Ma, Kun Yan, Ping Wang

Understanding of video creativity and content often varies among individuals, with differences in focal points and cognitive levels across different ages, experiences, and genders. There is currently a lack of research in this area, and most existing benchmarks suffer from several drawbacks: 1) a limited number of modalities and answers with restrictive length; 2) the content and scenarios within the videos are excessively monotonous, transmitting allegories and emotions that are overly simplistic. To bridge the gap to real-world applications, we introduce a large-scale Subjective Response Indicators for Advertisement Videos dataset, namely SRI-ADV. Specifically, we collected real changes in Electroencephalographic (EEG) and eye-tracking regions from different demographics while they viewed identical video content. Utilizing this multi-modal dataset, we developed tasks and protocols to analyze and evaluate the extent of cognitive understanding of video content among different users. Along with the dataset, we designed a Hypergraph Multi-modal Large Language Model (HMLLM) to explore the associations among different demographics, video elements, EEG, and eye-tracking indicators. HMLLM could bridge semantic gaps across rich modalities and integrate information beyond different modalities to perform logical reasoning. Extensive experimental evaluations on SRI-ADV and other additional video-based generative performance benchmarks demonstrate the effectiveness of our method. The codes and dataset will be released at https://github.com/suay1113/HMLLM.
PDF Accepted by ACM MULTIMEDIA 2024

点此查看论文截图

Deep Understanding of Soccer Match Videos

Authors:Shikun Xu, Yandong Zhu, Gen Li, Changhu Wang

Soccer is one of the most popular sport worldwide, with live broadcasts frequently available for major matches. However, extracting detailed, frame-by-frame information on player actions from these videos remains a challenge. Utilizing state-of-the-art computer vision technologies, our system can detect key objects such as soccer balls, players and referees. It also tracks the movements of players and the ball, recognizes player numbers, classifies scenes, and identifies highlights such as goal kicks. By analyzing live TV streams of soccer matches, our system can generate highlight GIFs, tactical illustrations, and diverse summary graphs of ongoing games. Through these visual recognition techniques, we deliver a comprehensive understanding of soccer game videos, enriching the viewer’s experience with detailed and insightful analysis.
PDF

点此查看论文截图

Goldfish: Vision-Language Understanding of Arbitrarily Long Videos

Authors:Kirolos Ataallah, Xiaoqian Shen, Eslam Abdelrahman, Essam Sleiman, Mingchen Zhuge, Jian Ding, Deyao Zhu, Jürgen Schmidhuber, Mohamed Elhoseiny

Most current LLM-based models for video understanding can process videos within minutes. However, they struggle with lengthy videos due to challenges such as “noise and redundancy”, as well as “memory and computation” constraints. In this paper, we present Goldfish, a methodology tailored for comprehending videos of arbitrary lengths. We also introduce the TVQA-long benchmark, specifically designed to evaluate models’ capabilities in understanding long videos with questions in both vision and text content. Goldfish approaches these challenges with an efficient retrieval mechanism that initially gathers the top-k video clips relevant to the instruction before proceeding to provide the desired response. This design of the retrieval mechanism enables the Goldfish to efficiently process arbitrarily long video sequences, facilitating its application in contexts such as movies or television series. To facilitate the retrieval process, we developed MiniGPT4-Video that generates detailed descriptions for the video clips. In addressing the scarcity of benchmarks for long video evaluation, we adapted the TVQA short video benchmark for extended content analysis by aggregating questions from entire episodes, thereby shifting the evaluation from partial to full episode comprehension. We attained a 41.78% accuracy rate on the TVQA-long benchmark, surpassing previous methods by 14.94%. Our MiniGPT4-Video also shows exceptional performance in short video comprehension, exceeding existing state-of-the-art methods by 3.23%, 2.03%, 16.5% and 23.59% on the MSVD, MSRVTT, TGIF, and TVQA short video benchmarks, respectively. These results indicate that our models have significant improvements in both long and short-video understanding. Our models and code have been made publicly available at https://vision-cair.github.io/Goldfish_website/
PDF 25 pages, 11 figures, accepted by ECCV 2024

点此查看论文截图

Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data

Authors:Wufei Ma, Kai Li, Zhongshi Jiang, Moustafa Meshry, Qihao Liu, Huiyu Wang, Christian Häne, Alan Yuille

Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this paper, we aim to better assess the capabilities of current video-text models and understand their limitations. We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD), and a new Feint6K dataset. To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning. Analyses show that previous video-text foundation models can be easily fooled by counterfactually augmented data and are far behind human-level performance. In order to narrow the gap between video-text models and human performance on RCAD, we identify a key limitation of current contrastive approaches on video-text data and introduce LLM-teacher, a more effective approach to learn action semantics by leveraging knowledge obtained from a pretrained large language model. Experiments and analyses show that our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models. Our Feint6K dataset and project page is available at https://feint6k.github.io.
PDF ECCV 2024. Project page: https://feint6k.github.io

点此查看论文截图

WTS: A Pedestrian-Centric Traffic Video Dataset for Fine-grained Spatial-Temporal Understanding

Authors:Quan Kong, Yuki Kawana, Rajat Saini, Ashutosh Kumar, Jingjing Pan, Ta Gu, Yohei Ozao, Balazs Opra, David C. Anastasiu, Yoichi Sato, Norimasa Kobori

In this paper, we address the challenge of fine-grained video event understanding in traffic scenarios, vital for autonomous driving and safety. Traditional datasets focus on driver or vehicle behavior, often neglecting pedestrian perspectives. To fill this gap, we introduce the WTS dataset, highlighting detailed behaviors of both vehicles and pedestrians across over 1.2k video events in hundreds of traffic scenarios. WTS integrates diverse perspectives from vehicle ego and fixed overhead cameras in a vehicle-infrastructure cooperative environment, enriched with comprehensive textual descriptions and unique 3D Gaze data for a synchronized 2D/3D view, focusing on pedestrian analysis. We also pro-vide annotations for 5k publicly sourced pedestrian-related traffic videos. Additionally, we introduce LLMScorer, an LLM-based evaluation metric to align inference captions with ground truth. Using WTS, we establish a benchmark for dense video-to-text tasks, exploring state-of-the-art Vision-Language Models with an instance-aware VideoLLM method as a baseline. WTS aims to advance fine-grained video event understanding, enhancing traffic safety and autonomous driving development.
PDF ECCV24. Website: https://woven-visionai.github.io/wts-dataset-homepage/

点此查看论文截图

Causal Understanding For Video Question Answering

Authors:Bhanu Prakash Reddy Guda, Tanmay Kulkarni, Adithya Sampath, Swarnashree Mysore Sathyendra

Video Question Answering is a challenging task, which requires the model to reason over multiple frames and understand the interaction between different objects to answer questions based on the context provided within the video, especially in datasets like NExT-QA (Xiao et al., 2021a) which emphasize on causal and temporal questions. Previous approaches leverage either sub-sampled information or causal intervention techniques along with complete video features to tackle the NExT-QA task. In this work we elicit the limitations of these approaches and propose solutions along four novel directions of improvements on theNExT-QA dataset. Our approaches attempts to compensate for the shortcomings in the previous works by systematically attacking each of these problems by smartly sampling frames, explicitly encoding actions and creating interventions that challenge the understanding of the model. Overall, for both single-frame (+6.3%) and complete-video (+1.1%) based approaches, we obtain the state-of-the-art results on NExT-QA dataset.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录