2024-08-15 更新
VisMin: Visual Minimal-Change Understanding
Authors:Rabiul Awal, Saba Ahmadi, Le Zhang, Aishwarya Agrawal
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). Existing benchmarks primarily focus on evaluating VLMs’ capability to distinguish between two very similar \textit{captions} given an image. In this paper, we introduce a new, challenging benchmark termed \textbf{Vis}ual \textbf{Min}imal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. The image pair and caption pair contain minimal changes, i.e., only one aspect changes at a time from among the following: \textit{object}, \textit{attribute}, \textit{count}, and \textit{spatial relation}. These changes test the models’ understanding of objects, attributes (such as color, material, shape), counts, and spatial relationships between objects. We built an automatic framework using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. We also generate a large-scale training dataset to finetune CLIP and Idefics2, showing significant improvements in fine-grained understanding across benchmarks and in CLIP’s general image-text alignment. We release all resources, including the benchmark, training data, and finetuned model checkpoints, at \url{https://vismin.net/}.
PDF Project URL at https://vismin.net/
点此查看论文截图
Diffusion Feedback Helps CLIP See Better
Authors:Wenxuan Wang, Quan Sun, Fan Zhang, Yepeng Tang, Jing Liu, Xinlong Wang
Contrastive Language-Image Pre-training (CLIP), which excels at abstracting open-world representations across domains and modalities, has become a foundation for a variety of vision and multimodal tasks. However, recent studies reveal that CLIP has severe visual shortcomings, such as which can hardly distinguish orientation, quantity, color, structure, etc. These visual shortcomings also limit the perception capabilities of multimodal large language models (MLLMs) built on CLIP. The main reason could be that the image-text pairs used to train CLIP are inherently biased, due to the lack of the distinctiveness of the text and the diversity of images. In this work, we present a simple post-training approach for CLIP models, which largely overcomes its visual shortcomings via a self-supervised diffusion process. We introduce DIVA, which uses the DIffusion model as a Visual Assistant for CLIP. Specifically, DIVA leverages generative feedback from text-to-image diffusion models to optimize CLIP representations, with only images (without corresponding text). We demonstrate that DIVA improves CLIP’s performance on the challenging MMVP-VLM benchmark which assesses fine-grained visual abilities to a large extent (e.g., 3-7%), and enhances the performance of MLLMs and vision models on multimodal understanding and segmentation tasks. Extensive evaluation on 29 image classification and retrieval benchmarks confirms that our framework preserves CLIP’s strong zero-shot capabilities. The code is available at https://github.com/baaivision/DIVA.
PDF
点此查看论文截图
Specify and Edit: Overcoming Ambiguity in Text-Based Image Editing
Authors:Ekaterina Iakovleva, Fabio Pizzati, Philip Torr, Stéphane Lathuilière
Text-based editing diffusion models exhibit limited performance when the user’s input instruction is ambiguous. To solve this problem, we propose $\textit{Specify ANd Edit}$ (SANE), a zero-shot inference pipeline for diffusion-based editing systems. We use a large language model (LLM) to decompose the input instruction into specific instructions, i.e. well-defined interventions to apply to the input image to satisfy the user’s request. We benefit from the LLM-derived instructions along the original one, thanks to a novel denoising guidance strategy specifically designed for the task. Our experiments with three baselines and on two datasets demonstrate the benefits of SANE in all setups. Moreover, our pipeline improves the interpretability of editing models, and boosts the output diversity. We also demonstrate that our approach can be applied to any edit, whether ambiguous or not. Our code is public at https://github.com/fabvio/SANE.
PDF
点此查看论文截图
Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities
Authors:Lorenzo Baraldi, Federico Cocchi, Marcella Cornia, Lorenzo Baraldi, Alessandro Nicolosi, Rita Cucchiara
Discerning between authentic content and that generated by advanced AI methods has become increasingly challenging. While previous research primarily addresses the detection of fake faces, the identification of generated natural images has only recently surfaced. This prompted the recent exploration of solutions that employ foundation vision-and-language models, like CLIP. However, the CLIP embedding space is optimized for global image-to-text alignment and is not inherently designed for deepfake detection, neglecting the potential benefits of tailored training and local image features. In this study, we propose CoDE (Contrastive Deepfake Embeddings), a novel embedding space specifically designed for deepfake detection. CoDE is trained via contrastive learning by additionally enforcing global-local similarities. To sustain the training of our model, we generate a comprehensive dataset that focuses on images generated by diffusion models and encompasses a collection of 9.2 million images produced by using four different generators. Experimental results demonstrate that CoDE achieves state-of-the-art accuracy on the newly collected dataset, while also showing excellent generalization capabilities to unseen image generators. Our source code, trained models, and collected dataset are publicly available at: https://github.com/aimagelab/CoDE.
PDF ECCV 2024
点此查看论文截图
SynthVLM: High-Efficiency and High-Quality Synthetic Data for Vision Language Models
Authors:Zheng Liu, Hao Liang, Xijie Huang, Wentao Xiong, Qinhan Yu, Linzhuang Sun, Chong Chen, Conghui He, Bin Cui, Wentao Zhang
Recently, with the rise of web images, managing and understanding large-scale image datasets has become increasingly important. Vision Large Language Models (VLLMs) have recently emerged due to their robust vision-understanding capabilities. However, training these models requires vast amounts of data, posing challenges to efficiency, effectiveness, data quality, and privacy. In this paper, we introduce SynthVLM, a novel data synthesis pipeline for VLLMs. Unlike existing methods that generate captions from images, SynthVLM employs advanced diffusion models and high-quality captions to automatically generate and select high-resolution images from captions, creating precisely aligned image-text pairs. Leveraging these pairs, we achieve state-of-the-art (SoTA) performance on various vision question answering tasks, maintaining high alignment quality and preserving advanced language abilities. Moreover, SynthVLM surpasses traditional GPT-4 Vision-based caption generation methods in performance while significantly reducing computational overhead. Crucially, our method’s reliance on purely generated data ensures the preservation of privacy, achieving SoTA performance with just 100k data points (only 18% of the official dataset size).
PDF
点此查看论文截图
Diffusion Augmented Agents: A Framework for Efficient Exploration and Transfer Learning
Authors:Norman Di Palo, Leonard Hasenclever, Jan Humplik, Arunkumar Byravan
We introduce Diffusion Augmented Agents (DAAG), a novel framework that leverages large language models, vision language models, and diffusion models to improve sample efficiency and transfer learning in reinforcement learning for embodied agents. DAAG hindsight relabels the agent’s past experience by using diffusion models to transform videos in a temporally and geometrically consistent way to align with target instructions with a technique we call Hindsight Experience Augmentation. A large language model orchestrates this autonomous process without requiring human supervision, making it well-suited for lifelong learning scenarios. The framework reduces the amount of reward-labeled data needed to 1) finetune a vision language model that acts as a reward detector, and 2) train RL agents on new tasks. We demonstrate the sample efficiency gains of DAAG in simulated robotics environments involving manipulation and navigation. Our results show that DAAG improves learning of reward detectors, transferring past experience, and acquiring new tasks - key abilities for developing efficient lifelong learning agents. Supplementary material and visualizations are available on our website https://sites.google.com/view/diffusion-augmented-agents/
PDF Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024
点此查看论文截图
Lost in Translation: Latent Concept Misalignment in Text-to-Image Diffusion Models
Authors:Juntu Zhao, Junyu Deng, Yixin Ye, Chongxuan Li, Zhijie Deng, Dequan Wang
Advancements in text-to-image diffusion models have broadened extensive downstream practical applications, but such models often encounter misalignment issues between text and image. Taking the generation of a combination of two disentangled concepts as an example, say given the prompt “a tea cup of iced coke”, existing models usually generate a glass cup of iced coke because the iced coke usually co-occurs with the glass cup instead of the tea one during model training. The root of such misalignment is attributed to the confusion in the latent semantic space of text-to-image diffusion models, and hence we refer to the “a tea cup of iced coke” phenomenon as Latent Concept Misalignment (LC-Mis). We leverage large language models (LLMs) to thoroughly investigate the scope of LC-Mis, and develop an automated pipeline for aligning the latent semantics of diffusion models to text prompts. Empirical assessments confirm the effectiveness of our approach, substantially reducing LC-Mis errors and enhancing the robustness and versatility of text-to-image diffusion models. The code and dataset are here: https://github.com/RossoneriZhao/iced_coke.
PDF Accepted by the 18th European Conference on Computer Vision ECCV 2024
点此查看论文截图
Diffusion Guided Language Modeling
Authors:Justin Lovelace, Varsha Kishore, Yiwei Chen, Kilian Q. Weinberger
Current language models demonstrate remarkable proficiency in text generation. However, for many applications it is desirable to control attributes, such as sentiment, or toxicity, of the generated language — ideally tailored towards each specific use case and target audience. For auto-regressive language models, existing guidance methods are prone to decoding errors that cascade during generation and degrade performance. In contrast, text diffusion models can easily be guided with, for example, a simple linear sentiment classifier — however they do suffer from significantly higher perplexity than auto-regressive alternatives. In this paper we use a guided diffusion model to produce a latent proposal that steers an auto-regressive language model to generate text with desired properties. Our model inherits the unmatched fluency of the auto-regressive approach and the plug-and-play flexibility of diffusion. We show that it outperforms previous plug-and-play guidance methods across a wide range of benchmark data sets. Further, controlling a new attribute in our framework is reduced to training a single logistic regression classifier.
PDF ACL Findings 2024
点此查看论文截图
Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models
Authors:Qirui Jiao, Daoyuan Chen, Yilun Huang, Yaliang Li, Ying Shen
High-performance Multimodal Large Language Models (MLLMs) rely heavily on data quality. This study introduces a novel dataset named Img-Diff, designed to enhance fine-grained image recognition in MLLMs by leveraging insights from contrastive learning and image difference captioning. By analyzing object differences between similar images, we challenge models to identify both matching and distinct components. We utilize the Stable-Diffusion-XL model and advanced image editing techniques to create pairs of similar images that highlight object replacements. Our methodology includes a Difference Area Generator for object differences identifying, followed by a Difference Captions Generator for detailed difference descriptions. The result is a relatively small but high-quality dataset of “object replacement” samples. We use the the proposed dataset to finetune state-of-the-art (SOTA) MLLMs such as MGM-7B, yielding comprehensive improvements of performance scores over SOTA models that trained with larger-scale datasets, in numerous image difference and Visual Question Answering tasks. For instance, our trained models notably surpass the SOTA models GPT-4V and Gemini on the MMVP benchmark. Besides, we investigate alternative methods for generating image difference data through “object removal” and conduct a thorough evaluation to confirm the dataset’s diversity, quality, and robustness, presenting several insights on the synthesis of such a contrastive dataset. To encourage further research and advance the field of multimodal data synthesis and enhancement of MLLMs’ fundamental capabilities for image understanding, we release our codes and dataset at https://github.com/modelscope/data-juicer/tree/ImgDiff.
PDF 14 pages, 9 figures, 7 tables
点此查看论文截图
The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery
Authors:Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, David Ha
One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aids to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first comprehensive framework for fully automatic scientific discovery, enabling frontier large language models to perform research independently and communicate their findings. We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated review process for evaluation. In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community. We demonstrate its versatility by applying it to three distinct subfields of machine learning: diffusion modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented and developed into a full paper at a cost of less than $15 per paper. To evaluate the generated papers, we design and validate an automated reviewer, which we show achieves near-human performance in evaluating paper scores. The AI Scientist can produce papers that exceed the acceptance threshold at a top machine learning conference as judged by our automated reviewer. This approach signifies the beginning of a new era in scientific discovery in machine learning: bringing the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer to a world where endless affordable creativity and innovation can be unleashed on the world’s most challenging problems. Our code is open-sourced at https://github.com/SakanaAI/AI-Scientist
PDF
点此查看论文截图
SeLoRA: Self-Expanding Low-Rank Adaptation of Latent Diffusion Model for Medical Image Synthesis
Authors:Yuchen Mao, Hongwei Li, Wei Pang, Giorgos Papanastasiou, Guang Yang, Chengjia Wang
The persistent challenge of medical image synthesis posed by the scarcity of annotated data and the need to synthesize `missing modalities’ for multi-modal analysis, underscored the imperative development of effective synthesis methods. Recently, the combination of Low-Rank Adaptation (LoRA) with latent diffusion models (LDMs) has emerged as a viable approach for efficiently adapting pre-trained large language models, in the medical field. However, the direct application of LoRA assumes uniform ranking across all linear layers, overlooking the significance of different weight matrices, and leading to sub-optimal outcomes. Prior works on LoRA prioritize the reduction of trainable parameters, and there exists an opportunity to further tailor this adaptation process to the intricate demands of medical image synthesis. In response, we present SeLoRA, a Self-Expanding Low-Rank Adaptation Module, that dynamically expands its ranking across layers during training, strategically placing additional ranks on crucial layers, to allow the model to elevate synthesis quality where it matters most. The proposed method not only enables LDMs to fine-tune on medical data efficiently but also empowers the model to achieve improved image quality with minimal ranking. The code of our SeLoRA method is publicly available on https://anonymous.4open.science/r/SeLoRA-980D .
PDF Project Page: https://yuchen20.github.io/SeLoRA.github.io/
点此查看论文截图
Knowledge in Superposition: Unveiling the Failures of Lifelong Knowledge Editing for Large Language Models
Authors:Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao
Knowledge editing aims to update outdated or incorrect knowledge in large language models (LLMs). However, current knowledge editing methods have limited scalability for lifelong editing. This study explores the fundamental reason why knowledge editing fails in lifelong editing. We begin with the closed-form solution derived from linear associative memory, which underpins state-of-the-art knowledge editing methods. We extend the solution from single editing to lifelong editing, and through rigorous mathematical derivation, identify an interference term in the final solution, suggesting that editing knowledge may impact irrelevant knowledge. Further analysis of the interference term reveals a close relationship with superposition between knowledge representations. When knowledge superposition does not exist in language models, the interference term vanishes, allowing for lossless knowledge editing. Experiments across numerous language models reveal that knowledge superposition is universal, exhibiting high kurtosis, zero mean, and heavy-tailed distributions with clear scaling laws. Ultimately, by combining theory and experiments, we demonstrate that knowledge superposition is the fundamental reason for the failure of lifelong editing. Moreover, this is the first study to investigate knowledge editing from the perspective of superposition and provides a comprehensive observation of superposition across numerous real-world language models. Code available at https://github.com/ChenhuiHu/knowledge_in_superposition.
PDF
点此查看论文截图
LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image
Authors:Fan Yang, Sicheng Zhao, Yanhao Zhang, Haoxiang Chen, Hui Chen, Wenbo Tang, Haonan Lu, Pengfei Xu, Zhenyu Yang, Jungong Han, Guiguang Ding
Recent advancements in autonomous driving, augmented reality, robotics, and embodied intelligence have necessitated 3D perception algorithms. However, current 3D perception methods, particularly small models, struggle with processing logical reasoning, question-answering, and handling open scenario categories. On the other hand, generative multimodal large language models (MLLMs) excel in general capacity but underperform in 3D tasks, due to weak spatial and local object perception, poor text-based geometric numerical output, and inability to handle camera focal variations. To address these challenges, we propose the following solutions: Spatial-Enhanced Local Feature Mining for better spatial feature extraction, 3D Query Token-Derived Info Decoding for precise geometric regression, and Geometry Projection-Based 3D Reasoning for handling camera focal length variations. We employ parameter-efficient fine-tuning for a pre-trained MLLM and develop LLMI3D, a powerful 3D perception MLLM. Additionally, we have constructed the IG3D dataset, which provides fine-grained descriptions and question-answer annotations. Extensive experiments demonstrate that our LLMI3D achieves state-of-the-art performance, significantly outperforming existing methods.
PDF
点此查看论文截图
From Brazilian Portuguese to European Portuguese
Authors:João Sanches, Rui Ribeiro, Luísa Coheur
Brazilian Portuguese and European Portuguese are two varieties of the same language and, despite their close similarities, they exhibit several differences. However, there is a significant disproportion in the availability of resources between the two variants, with Brazilian Portuguese having more abundant resources. This inequity can impact the quality of translation services accessible to European Portuguese speakers. To address this issue, we propose the development of a Brazilian Portuguese to European Portuguese translation system, leveraging recent advancements in neural architectures and models. To evaluate the performance of such systems, we manually curated a gold test set comprising 500 sentences across five different topics. Each sentence in the gold test set has two distinct references, facilitating a straightforward evaluation of future translation models. We experimented with various models by fine-tuning existing Large Language Models using parallel data extracted from movie subtitles and TED Talks transcripts in both Brazilian and European Portuguese. Our evaluation involved the use of conventional automatic metrics as well as a human evaluation. In addition, all models were compared against ChatGPT 3.5 Turbo, which currently yields the best results.
PDF 12 pages, 8 tables
点此查看论文截图
Large Language Models Prompting With Episodic Memory
Authors:Dai Do, Quan Tran, Svetha Venkatesh, Hung Le
Prompt optimization is essential for enhancing the performance of Large Language Models (LLMs) in a range of Natural Language Processing (NLP) tasks, particularly in scenarios of few-shot learning where training examples are incorporated directly into the prompt. Despite the growing interest in optimizing prompts with few-shot examples, existing methods for prompt optimization are often resource-intensive or perform inadequately. In this work, we propose PrOmpting with Episodic Memory (POEM), a novel prompt optimization technique that is simple, efficient, and demonstrates strong generalization capabilities. We approach prompt optimization as a Reinforcement Learning (RL) challenge, using episodic memory to archive combinations of input data, permutations of few-shot examples, and the rewards observed during training. In the testing phase, we optimize the sequence of examples for each test query by selecting the sequence that yields the highest total rewards from the top-k most similar training examples in the episodic memory. Our results show that POEM outperforms recent techniques like TEMPERA and RLPrompt by over 5.3% in various text classification tasks. Furthermore, our approach adapts well to broader language understanding tasks, consistently outperforming conventional heuristic methods for ordering examples.
PDF
点此查看论文截图
Cross-Platform Video Person ReID: A New Benchmark Dataset and Adaptation Approach
Authors:Shizhou Zhang, Wenlong Luo, De Cheng, Qingchun Yang, Lingyan Ran, Yinghui Xing, Yanning Zhang
In this paper, we construct a large-scale benchmark dataset for Ground-to-Aerial Video-based person Re-Identification, named G2A-VReID, which comprises 185,907 images and 5,576 tracklets, featuring 2,788 distinct identities. To our knowledge, this is the first dataset for video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has the following characteristics: 1) Drastic view changes; 2) Large number of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference in resolution. Additionally, we propose a new benchmark approach for cross-platform ReID by transforming the cross-platform visual alignment problem into visual-semantic alignment through vision-language model (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter module to adapt image-based foundation model to video ReID tasks, termed VSLA-CLIP. Besides, to further reduce the great discrepancy across the platforms, we also devise the platform-bridge prompts for efficient visual feature alignment. Extensive experiments demonstrate the superiority of the proposed method on all existing video ReID datasets and our proposed G2A-VReID dataset.
PDF
点此查看论文截图
Development of a Multi-Agent Clinical Decision Support System for Korean Triage and Acuity Scale (KTAS)-Based Triage and Treatment Planning in Emergency Departments
Authors:Seungjun Han, Wongyung Choi
Emergency department (ED) overcrowding and the complexity of rapid decision-making in critical care settings pose significant challenges to healthcare systems worldwide. While clinical decision support systems (CDSS) have shown promise, the integration of large language models (LLMs) offers new possibilities for enhancing triage accuracy and clinical decision-making. This study presents an LLM-driven CDSS designed to assist ED physicians and nurses in patient triage, treatment planning, and overall emergency care management. We developed a multi-agent CDSS utilizing Llama-3-70b as the base LLM, orchestrated by CrewAI and Langchain. The system comprises four AI agents emulating key ED roles: Triage Nurse, Emergency Physician, Pharmacist, and ED Coordinator. It incorporates the Korean Triage and Acuity Scale (KTAS) for triage assessment and integrates with the RxNorm API for medication management. The model was evaluated using the Asclepius dataset, with performance assessed by a clinical emergency medicine specialist. The CDSS demonstrated high accuracy in triage decision-making compared to the baseline of a single-agent system. Furthermore, the system exhibited strong performance in critical areas, including primary diagnosis, critical findings identification, disposition decision-making, treatment planning, and resource allocation. Our multi-agent CDSS demonstrates significant potential for supporting comprehensive emergency care management. By leveraging state-of-the-art AI technologies, this system offers a scalable and adaptable tool that could enhance emergency medical care delivery, potentially alleviating ED overcrowding and improving patient outcomes. This work contributes to the growing field of AI applications in emergency medicine and offers a promising direction for future research and clinical implementation.
PDF
点此查看论文截图
WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs
Authors:Weijian Xie, Xuefeng Liang, Yuhui Liu, Kaihua Ni, Hong Cheng, Zetian Hu
Large Language Models (LLMs) have greatly contributed to the development of adaptive intelligent agents and are positioned as an important way to achieve Artificial General Intelligence (AGI). However, LLMs are prone to produce factually incorrect information and often produce “phantom” content that undermines their reliability, which poses a serious challenge for their deployment in real-world scenarios. Enhancing LLMs by combining external databases and information retrieval mechanisms is an effective path. To address the above challenges, we propose a new approach called WeKnow-RAG, which integrates Web search and Knowledge Graphs into a “Retrieval-Augmented Generation (RAG)” system. First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval. WeKnow-RAG then utilizes domain-specific knowledge graphs to satisfy a variety of queries and domains, thereby improving performance on factual information and complex reasoning tasks by employing multi-stage web page retrieval techniques using both sparse and dense retrieval methods. Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process. Finally, we also integrate a self-assessment mechanism for the LLM to evaluate the trustworthiness of the answers it generates. Our approach proves its outstanding effectiveness in a wide range of offline experiments and online submissions.
PDF 8 pages, 2 figures, technical report for 3rd place in Task 3 of Meta KDD Cup 2024 CRAG Challenge
点此查看论文截图
Alignment-Enhanced Decoding:Defending via Token-Level Adaptive Refining of Probability Distributions
Authors:Quan Liu, Zhenhong Zhou, Longzhu He, Yi Liu, Wei Zhang, Sen Su
Large language models are susceptible to jailbreak attacks, which can result in the generation of harmful content. While prior defenses mitigate these risks by perturbing or inspecting inputs, they ignore competing objectives, the underlying cause of alignment failures. In this paper, we propose Alignment-Enhanced Decoding (AED), a novel defense that employs adaptive decoding to address the root causes of jailbreak issues. We first define the Competitive Index to quantify alignment failures and utilize feedback from self-evaluation to compute post-alignment logits. Then, AED adaptively combines AED and post-alignment logits with the original logits to obtain harmless and helpful distributions. Consequently, our method enhances safety alignment while maintaining helpfulness. We conduct experiments across five models and four common jailbreaks, with the results validating the effectiveness of our approach. Code is available at https://github.com/GIGABaozi/AED.git.
PDF 15 pages, 5 figures
点此查看论文截图
Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Authors:Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, Dacheng Tao
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and 10+ machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at \url{https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications}.
PDF