2024-05-14 更新
How to build the best medical image segmentation algorithm using foundation models: a comprehensive empirical study with Segment Anything Model
Authors:Hanxue Gu, Haoyu Dong, Jichen Yang, Maciej A. Mazurowski
Automated segmentation is a fundamental medical image analysis task, which enjoys significant advances due to the advent of deep learning. While foundation models have been useful in natural language processing and some vision tasks for some time, the foundation model developed with image segmentation in mind - Segment Anything Model (SAM) - has been developed only recently and has shown similar promise. However, there are still no systematic analyses or “best-practice” guidelines for optimal fine-tuning of SAM for medical image segmentation. This work summarizes existing fine-tuning strategies with various backbone architectures, model components, and fine-tuning algorithms across 18 combinations, and evaluates them on 17 datasets covering all common radiology modalities. Our study reveals that (1) fine-tuning SAM leads to slightly better performance than previous segmentation methods, (2) fine-tuning strategies that use parameter-efficient learning in both the encoder and decoder are superior to other strategies, (3) network architecture has a small impact on final performance, (4) further training SAM with self-supervised learning can improve final model performance. We also demonstrate the ineffectiveness of some methods popular in the literature and further expand our experiments into few-shot and prompt-based settings. Lastly, we released our code and MRI-specific fine-tuned weights, which consistently obtained superior performance over the original SAM, at https://github.com/mazurowski-lab/finetune-SAM.
PDF Code available at https://github.com/mazurowski-lab/finetune-SAM
点此查看论文截图
Vision Transformer-based Adversarial Domain Adaptation
Authors:Yahan Li, Yuan Wu
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain. The most recent UDA methods always resort to adversarial training to yield state-of-the-art results and a dominant number of existing UDA methods employ convolutional neural networks (CNNs) as feature extractors to learn domain invariant features. Vision transformer (ViT) has attracted tremendous attention since its emergence and has been widely used in various computer vision tasks, such as image classification, object detection, and semantic segmentation, yet its potential in adversarial domain adaptation has never been investigated. In this paper, we fill this gap by employing the ViT as the feature extractor in adversarial domain adaptation. Moreover, we empirically demonstrate that ViT can be a plug-and-play component in adversarial domain adaptation, which means directly replacing the CNN-based feature extractor in existing UDA methods with the ViT-based feature extractor can easily obtain performance improvement. The code is available at https://github.com/LluckyYH/VT-ADA.
PDF 6 pages
点此查看论文截图
Training-Free Unsupervised Prompt for Vision-Language Models
Authors:Sifan Long, Linbin Wang, Zhen Zhao, Zichang Tan, Yiming Wu, Shengsheng Wang, Jingdong Wang
Prompt learning has become the most effective paradigm for adapting large pre-trained vision-language models (VLMs) to downstream tasks. Recently, unsupervised prompt tuning methods, such as UPL and POUF, directly leverage pseudo-labels as supervisory information to fine-tune additional adaptation modules on unlabeled data. However, inaccurate pseudo labels easily misguide the tuning process and result in poor representation capabilities. In light of this, we propose Training-Free Unsupervised Prompts (TFUP), which maximally preserves the inherent representation capabilities and enhances them with a residual connection to similarity-based prediction probabilities in a training-free and labeling-free manner. Specifically, we integrate both instance confidence and prototype scores to select representative samples, which are used to customize a reliable Feature Cache Model (FCM) for training-free inference. Then, we design a Multi-level Similarity Measure (MSM) that considers both feature-level and semantic-level similarities to calculate the distance between each test image and the cached sample as the weight of the corresponding cached label to generate similarity-based prediction probabilities. In this way, TFUP achieves surprising performance, even surpassing the training-base method on multiple classification datasets. Based on our TFUP, we propose a training-based approach (TFUP-T) to further boost the adaptation performance. In addition to the standard cross-entropy loss, TFUP-T adopts an additional marginal distribution entropy loss to constrain the model from a global perspective. Our TFUP-T achieves new state-of-the-art classification performance compared to unsupervised and few-shot adaptation approaches on multiple benchmarks. In particular, TFUP-T improves the classification accuracy of POUF by 3.3% on the most challenging Domain-Net dataset.
PDF
点此查看论文截图
OpenDlign: Enhancing Open-World 3D Learning with Depth-Aligned Images
Authors:Ye Mao, Junpeng Jing, Krystian Mikolajczyk
Recent advances in Vision and Language Models (VLMs) have improved open-world 3D representation, facilitating 3D zero-shot capability in unseen categories. Existing open-world methods pre-train an extra 3D encoder to align features from 3D data (e.g., depth maps or point clouds) with CAD-rendered images and corresponding texts. However, the limited color and texture variations in CAD images can compromise the alignment robustness. Furthermore, the volume discrepancy between pre-training datasets of the 3D encoder and VLM leads to sub-optimal 2D to 3D knowledge transfer. To overcome these issues, we propose OpenDlign, a novel framework for learning open-world 3D representations, that leverages depth-aligned images generated from point cloud-projected depth maps. Unlike CAD-rendered images, our generated images provide rich, realistic color and texture diversity while preserving geometric and semantic consistency with the depth maps. OpenDlign also optimizes depth map projection and integrates depth-specific text prompts, improving 2D VLM knowledge adaptation for 3D learning efficient fine-tuning. Experimental results show that OpenDlign significantly outperforms existing benchmarks in zero-shot and few-shot 3D tasks, exceeding prior scores by 8.0% on ModelNet40 and 16.4% on OmniObject3D with just 6 million tuned parameters. Moreover, integrating generated depth-aligned images into existing 3D learning pipelines consistently improves their performance.
PDF 12 pages
点此查看论文截图
AAPL: Adding Attributes to Prompt Learning for Vision-Language Models
Authors:Gahyeon Kim, Sohee Kim, Seokju Lee
Recent advances in large pre-trained vision-language models have demonstrated remarkable performance on zero-shot downstream tasks. Building upon this, recent studies, such as CoOp and CoCoOp, have proposed the use of prompt learning, where context within a prompt is replaced with learnable vectors, leading to significant improvements over manually crafted prompts. However, the performance improvement for unseen classes is still marginal, and to tackle this problem, data augmentation has been frequently used in traditional zero-shot learning techniques. Through our experiments, we have identified important issues in CoOp and CoCoOp: the context learned through traditional image augmentation is biased toward seen classes, negatively impacting generalization to unseen classes. To address this problem, we propose adversarial token embedding to disentangle low-level visual augmentation features from high-level class information when inducing bias in learnable prompts. Through our novel mechanism called “Adding Attributes to Prompt Learning”, AAPL, we guide the learnable context to effectively extract text features by focusing on high-level features for unseen classes. We have conducted experiments across 11 datasets, and overall, AAPL shows favorable performances compared to the existing methods in few-shot learning, zero-shot learning, cross-dataset, and domain generalization tasks.
PDF Accepted to CVPR 2024 Workshop on Prompting in Vision, Project Page: https://github.com/Gahyeonkim09/AAPL
点此查看论文截图
Binarizing Documents by Leveraging both Space and Frequency
Authors:Fabio Quattrini, Vittorio Pippi, Silvia Cascianelli, Rita Cucchiara
Document Image Binarization is a well-known problem in Document Analysis and Computer Vision, although it is far from being solved. One of the main challenges of this task is that documents generally exhibit degradations and acquisition artifacts that can greatly vary throughout the page. Nonetheless, even when dealing with a local patch of the document, taking into account the overall appearance of a wide portion of the page can ease the prediction by enriching it with semantic information on the ink and background conditions. In this respect, approaches able to model both local and global information have been proven suitable for this task. In particular, recent applications of Vision Transformer (ViT)-based models, able to model short and long-range dependencies via the attention mechanism, have demonstrated their superiority over standard Convolution-based models, which instead struggle to model global dependencies. In this work, we propose an alternative solution based on the recently introduced Fast Fourier Convolutions, which overcomes the limitation of standard convolutions in modeling global information while requiring fewer parameters than ViTs. We validate the effectiveness of our approach via extensive experimental analysis considering different types of degradations.
PDF Accepted at ICDAR2024
点此查看论文截图
UniRGB-IR: A Unified Framework for Visible-Infrared Downstream Tasks via Adapter Tuning
Authors:Maoxun Yuan, Bo Cui, Tianyi Zhao, Xingxing Wei
Semantic analysis on visible (RGB) and infrared (IR) images has gained attention for its ability to be more accurate and robust under low-illumination and complex weather conditions. Due to the lack of pre-trained foundation models on the large-scale infrared image datasets, existing methods prefer to design task-specific frameworks and directly fine-tune them with pre-trained foundation models on their RGB-IR semantic relevance datasets, which results in poor scalability and limited generalization. In this work, we propose a scalable and efficient framework called UniRGB-IR to unify RGB-IR downstream tasks, in which a novel adapter is developed to efficiently introduce richer RGB-IR features into the pre-trained RGB-based foundation model. Specifically, our framework consists of a vision transformer (ViT) foundation model, a Multi-modal Feature Pool (MFP) module and a Supplementary Feature Injector (SFI) module. The MFP and SFI modules cooperate with each other as an adpater to effectively complement the ViT features with the contextual multi-scale features. During training process, we freeze the entire foundation model to inherit prior knowledge and only optimize the MFP and SFI modules. Furthermore, to verify the effectiveness of our framework, we utilize the ViT-Base as the pre-trained foundation model to perform extensive experiments. Experimental results on various RGB-IR downstream tasks demonstrate that our method can achieve state-of-the-art performance. The source code and results are available at https://github.com/PoTsui99/UniRGB-IR.git.
PDF
点此查看论文截图
Spatio-Temporal Side Tuning Pre-trained Foundation Models for Video-based Pedestrian Attribute Recognition
Authors:Xiao Wang, Qian Zhu, Jiandong Jin, Jun Zhu, Futian Wang, Bo Jiang, Yaowei Wang, Yonghong Tian
Existing pedestrian attribute recognition (PAR) algorithms are mainly developed based on a static image, however, the performance is unreliable in challenging scenarios, such as heavy occlusion, motion blur, etc. In this work, we propose to understand human attributes using video frames that can fully use temporal information by fine-tuning a pre-trained multi-modal foundation model efficiently. Specifically, we formulate the video-based PAR as a vision-language fusion problem and adopt a pre-trained foundation model CLIP to extract the visual features. More importantly, we propose a novel spatiotemporal side-tuning strategy to achieve parameter-efficient optimization of the pre-trained vision foundation model. To better utilize the semantic information, we take the full attribute list that needs to be recognized as another input and transform the attribute words/phrases into the corresponding sentence via split, expand, and prompt operations. Then, the text encoder of CLIP is utilized for embedding processed attribute descriptions. The averaged visual tokens and text tokens are concatenated and fed into a fusion Transformer for multi-modal interactive learning. The enhanced tokens will be fed into a classification head for pedestrian attribute prediction. Extensive experiments on two large-scale video-based PAR datasets fully validated the effectiveness of our proposed framework. The source code of this paper is available at https://github.com/Event-AHU/OpenPAR.
PDF Parameter Efficient Fine-Tuning Strategy for Video-based Pedestrian Attribute Recognition
点此查看论文截图
CLIP-Mamba: CLIP Pretrained Mamba Models with OOD and Hessian Evaluation
Authors:Weiquan Huang, Yifei Shen, Yifan Yang
State space models and Mamba-based models have been increasingly applied across various domains, achieving state-of-the-art performance. This technical report introduces the first attempt to train a transferable Mamba model utilizing contrastive language-image pretraining (CLIP). We have trained Mamba models of varying sizes and undertaken comprehensive evaluations of these models on 26 zero-shot classification datasets and 16 out-of-distribution (OOD) datasets. Our findings reveal that a Mamba model with 67 million parameters is on par with a 307 million-parameter Vision Transformer (ViT) model in zero-shot classification tasks, highlighting the parameter efficiency of Mamba models. In tests of OOD generalization, Mamba-based models exhibit exceptional performance in conditions of OOD image contrast or when subjected to high-pass filtering. However, a Hessian analysis indicates that Mamba models feature a sharper and more non-convex landscape compared to ViT-based models, making them more challenging to train. The source code is available at https://github.com/raytrun/mamba-clip.
PDF
点此查看论文截图
Masked Multi-Query Slot Attention for Unsupervised Object Discovery
Authors:Rishav Pramanik, José-Fabian Villa-Vásquez, Marco Pedersoli
Unsupervised object discovery is becoming an essential line of research for tackling recognition problems that require decomposing an image into entities, such as semantic segmentation and object detection. Recently, object-centric methods that leverage self-supervision have gained popularity, due to their simplicity and adaptability to different settings and conditions. However, those methods do not exploit effective techniques already employed in modern self-supervised approaches. In this work, we consider an object-centric approach in which DINO ViT features are reconstructed via a set of queried representations called slots. Based on that, we propose a masking scheme on input features that selectively disregards the background regions, inducing our model to focus more on salient objects during the reconstruction phase. Moreover, we extend the slot attention to a multi-query approach, allowing the model to learn multiple sets of slots, producing more stable masks. During training, these multiple sets of slots are learned independently while, at test time, these sets are merged through Hungarian matching to obtain the final slots. Our experimental results and ablations on the PASCAL-VOC 2012 dataset show the importance of each component and highlight how their combination consistently improves object localization. Our source code is available at: https://github.com/rishavpramanik/maskedmultiqueryslot
PDF Paper accepted for presentation at IJCNN 2024
点此查看论文截图
Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning
Authors:Weihao Jiang, Chang Liu, Kun He
Humans possess remarkable ability to accurately classify new, unseen images after being exposed to only a few examples. Such ability stems from their capacity to identify common features shared between new and previously seen images while disregarding distractions such as background variations. However, for artificial neural network models, determining the most relevant features for distinguishing between two images with limited samples presents a challenge. In this paper, we propose an intra-task mutual attention method for few-shot learning, that involves splitting the support and query samples into patches and encoding them using the pre-trained Vision Transformer (ViT) architecture. Specifically, we swap the class (CLS) token and patch tokens between the support and query sets to have the mutual attention, which enables each set to focus on the most useful information. This facilitates the strengthening of intra-class representations and promotes closer proximity between instances of the same class. For implementation, we adopt the ViT-based network architecture and utilize pre-trained model parameters obtained through self-supervision. By leveraging Masked Image Modeling as a self-supervised training task for pre-training, the pre-trained model yields semantically meaningful representations while successfully avoiding supervision collapse. We then employ a meta-learning method to fine-tune the last several layers and CLS token modules. Our strategy significantly reduces the num- ber of parameters that require fine-tuning while effectively uti- lizing the capability of pre-trained model. Extensive experiments show that our framework is simple, effective and computationally efficient, achieving superior performance as compared to the state-of-the-art baselines on five popular few-shot classification benchmarks under the 5-shot and 1-shot scenarios
PDF
点此查看论文截图
Class-relevant Patch Embedding Selection for Few-Shot Image Classification
Authors:Weihao Jiang, Haoyang Cui, Kun He
Effective image classification hinges on discerning relevant features from both foreground and background elements, with the foreground typically holding the critical information. While humans adeptly classify images with limited exposure, artificial neural networks often struggle with feature selection from rare samples. To address this challenge, we propose a novel method for selecting class-relevant patch embeddings. Our approach involves splitting support and query images into patches, encoding them using a pre-trained Vision Transformer (ViT) to obtain class embeddings and patch embeddings, respectively. Subsequently, we filter patch embeddings using class embeddings to retain only the class-relevant ones. For each image, we calculate the similarity between class embedding and each patch embedding, sort the similarity sequence in descending order, and only retain top-ranked patch embeddings. By prioritizing similarity between the class embedding and patch embeddings, we select top-ranked patch embeddings to be fused with class embedding to form a comprehensive image representation, enhancing pattern recognition across instances. Our strategy effectively mitigates the impact of class-irrelevant patch embeddings, yielding improved performance in pre-trained models. Extensive experiments on popular few-shot classification benchmarks demonstrate the simplicity, efficacy, and computational efficiency of our approach, outperforming state-of-the-art baselines under both 5-shot and 1-shot scenarios.
PDF arXiv admin note: text overlap with arXiv:2405.03109
点此查看论文截图
Cross-IQA: Unsupervised Learning for Image Quality Assessment
Authors:Zhen Zhang
Automatic perception of image quality is a challenging problem that impacts billions of Internet and social media users daily. To advance research in this field, we propose a no-reference image quality assessment (NR-IQA) method termed Cross-IQA based on vision transformer(ViT) model. The proposed Cross-IQA method can learn image quality features from unlabeled image data. We construct the pretext task of synthesized image reconstruction to unsupervised extract the image quality information based ViT block. The pretrained encoder of Cross-IQA is used to fine-tune a linear regression model for score prediction. Experimental results show that Cross-IQA can achieve state-of-the-art performance in assessing the low-frequency degradation information (e.g., color change, blurring, etc.) of images compared with the classical full-reference IQA and NR-IQA under the same datasets.
PDF
点此查看论文截图
Exploring Vision Transformers for 3D Human Motion-Language Models with Motion Patches
Authors:Qing Yu, Mikihiro Tanaka, Kent Fujiwara
To build a cross-modal latent space between 3D human motion and language, acquiring large-scale and high-quality human motion data is crucial. However, unlike the abundance of image data, the scarcity of motion data has limited the performance of existing motion-language models. To counter this, we introduce “motion patches”, a new representation of motion sequences, and propose using Vision Transformers (ViT) as motion encoders via transfer learning, aiming to extract useful knowledge from the image domain and apply it to the motion domain. These motion patches, created by dividing and sorting skeleton joints based on body parts in motion sequences, are robust to varying skeleton structures, and can be regarded as color image patches in ViT. We find that transfer learning with pre-trained weights of ViT obtained through training with 2D image data can boost the performance of motion analysis, presenting a promising direction for addressing the issue of limited motion data. Our extensive experiments show that the proposed motion patches, used jointly with ViT, achieve state-of-the-art performance in the benchmarks of text-to-motion retrieval, and other novel challenging tasks, such as cross-skeleton recognition, zero-shot motion classification, and human interaction recognition, which are currently impeded by the lack of data.
PDF Accepted to CVPR 2024, Project website: https://yu1ut.com/MotionPatches-HP/
点此查看论文截图
TransAnaNet: Transformer-based Anatomy Change Prediction Network for Head and Neck Cancer Patient Radiotherapy
Authors:Meixu Chen, Kai Wang, Michael Dohopolski, Howard Morgan, Jing Wang
Early identification of head and neck cancer (HNC) patients who would experience significant anatomical change during radiotherapy (RT) is important to optimize patient clinical benefit and treatment resources. This study aims to assess the feasibility of using a vision-transformer (ViT) based neural network to predict RT-induced anatomic change in HNC patients. We retrospectively included 121 HNC patients treated with definitive RT/CRT. We collected the planning CT (pCT), planned dose, CBCTs acquired at the initial treatment (CBCT01) and fraction 21 (CBCT21), and primary tumor volume (GTVp) and involved nodal volume (GTVn) delineated on both pCT and CBCTs for model construction and evaluation. A UNet-style ViT network was designed to learn spatial correspondence and contextual information from embedded CT, dose, CBCT01, GTVp, and GTVn image patches. The model estimated the deformation vector field between CBCT01 and CBCT21 as the prediction of anatomic change, and deformed CBCT01 was used as the prediction of CBCT21. We also generated binary masks of GTVp, GTVn, and patient body for volumetric change evaluation. The predicted image from the proposed method yielded the best similarity to the real image (CBCT21) over pCT, CBCT01, and predicted CBCTs from other comparison models. The average MSE and SSIM between the normalized predicted CBCT to CBCT21 are 0.009 and 0.933, while the average dice coefficient between body mask, GTVp mask, and GTVn mask are 0.972, 0.792, and 0.821 respectively. The proposed method showed promising performance for predicting radiotherapy-induced anatomic change, which has the potential to assist in the decision-making of HNC Adaptive RT.
PDF
点此查看论文截图
Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control
Authors:Gunshi Gupta, Karmesh Yadav, Yarin Gal, Dhruv Batra, Zsolt Kira, Cong Lu, Tim G. J. Rudner
Embodied AI agents require a fine-grained understanding of the physical world mediated through visual and language inputs. Such capabilities are difficult to learn solely from task-specific data. This has led to the emergence of pre-trained vision-language models as a tool for transferring representations learned from internet-scale data to downstream tasks and new domains. However, commonly used contrastively trained representations such as in CLIP have been shown to fail at enabling embodied agents to gain a sufficiently fine-grained scene understanding — a capability vital for control. To address this shortcoming, we consider representations from pre-trained text-to-image diffusion models, which are explicitly optimized to generate images from text prompts and as such, contain text-conditioned representations that reflect highly fine-grained visuo-spatial information. Using pre-trained text-to-image diffusion models, we construct Stable Control Representations which allow learning downstream control policies that generalize to complex, open-ended environments. We show that policies learned using Stable Control Representations are competitive with state-of-the-art representation learning approaches across a broad range of simulated control settings, encompassing challenging manipulation and navigation tasks. Most notably, we show that Stable Control Representations enable learning policies that exhibit state-of-the-art performance on OVMM, a difficult open-vocabulary navigation benchmark.
PDF
点此查看论文截图
Pseudo-Prompt Generating in Pre-trained Vision-Language Models for Multi-Label Medical Image Classification
Authors:Yaoqin Ye, Junjie Zhang, Hongwei Shi
The task of medical image recognition is notably complicated by the presence of varied and multiple pathological indications, presenting a unique challenge in multi-label classification with unseen labels. This complexity underlines the need for computer-aided diagnosis methods employing multi-label zero-shot learning. Recent advancements in pre-trained vision-language models (VLMs) have showcased notable zero-shot classification abilities on medical images. However, these methods have limitations on leveraging extensive pre-trained knowledge from broader image datasets, and often depend on manual prompt construction by expert radiologists. By automating the process of prompt tuning, prompt learning techniques have emerged as an efficient way to adapt VLMs to downstream tasks. Yet, existing CoOp-based strategies fall short in performing class-specific prompts on unseen categories, limiting generalizability in fine-grained scenarios. To overcome these constraints, we introduce a novel prompt generation approach inspirited by text generation in natural language processing (NLP). Our method, named Pseudo-Prompt Generating (PsPG), capitalizes on the priori knowledge of multi-modal features. Featuring a RNN-based decoder, PsPG autoregressively generates class-tailored embedding vectors, i.e., pseudo-prompts. Comparative evaluations on various multi-label chest radiograph datasets affirm the superiority of our approach against leading medical vision-language and multi-label prompt learning methods. The source code is available at https://github.com/fallingnight/PsPG
PDF
点此查看论文截图
Dual-Task Vision Transformer for Rapid and Accurate Intracerebral Hemorrhage Classification on CT Images
Authors:Jialiang Fan, Guoyu Lu, Xinhui Fan
Intracerebral hemorrhage (ICH) is a severe and sudden medical condition caused by the rupture of blood vessels in the brain, leading to permanent damage to brain tissue and often resulting in functional disabilities or death in patients. Diagnosis and analysis of ICH typically rely on brain CT imaging. Given the urgency of ICH conditions, early treatment is crucial, necessitating rapid analysis of CT images to formulate tailored treatment plans. However, the complexity of ICH CT images and the frequent scarcity of specialist radiologists pose significant challenges. Therefore, we built a dataset for ICH and normal classification and three types of ICH image classification based on the hemorrhage location, i.e., Deep, Subcortical, and Lobar. In addition, we propose a dual-task vision transformer (DTViT) for the automated classification and diagnosis of ICH images. This neural network utilizes the encoder from ViT, employing attention mechanisms for feature extraction from CT images. We incorporated two multilayer perception (MLP)-based decoders within the network to simultaneously identify the presence of ICH and classify three types of hemorrhage locations. Experimental results demonstrate that our proposed multi-classification network performs well on the built real-world test dataset. The code and dataset for this study will be made publicly available upon paper acceptance at: https://github.com/Jialiangfan/ICH-classification.
PDF 9 pages, 4 figure3
点此查看论文截图
GreedyViG: Dynamic Axial Graph Construction for Efficient Vision GNNs
Authors:Mustafa Munir, William Avery, Md Mostafijur Rahman, Radu Marculescu
Vision graph neural networks (ViG) offer a new avenue for exploration in computer vision. A major bottleneck in ViGs is the inefficient k-nearest neighbor (KNN) operation used for graph construction. To solve this issue, we propose a new method for designing ViGs, Dynamic Axial Graph Construction (DAGC), which is more efficient than KNN as it limits the number of considered graph connections made within an image. Additionally, we propose a novel CNN-GNN architecture, GreedyViG, which uses DAGC. Extensive experiments show that GreedyViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification, object detection, instance segmentation, and semantic segmentation tasks. Our smallest model, GreedyViG-S, achieves 81.1% top-1 accuracy on ImageNet-1K, 2.9% higher than Vision GNN and 2.2% higher than Vision HyperGraph Neural Network (ViHGNN), with less GMACs and a similar number of parameters. Our largest model, GreedyViG-B obtains 83.9% top-1 accuracy, 0.2% higher than Vision GNN, with a 66.6% decrease in parameters and a 69% decrease in GMACs. GreedyViG-B also obtains the same accuracy as ViHGNN with a 67.3% decrease in parameters and a 71.3% decrease in GMACs. Our work shows that hybrid CNN-GNN architectures not only provide a new avenue for designing efficient models, but that they can also exceed the performance of current state-of-the-art models.
PDF Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
点此查看论文截图
TAI++: Text as Image for Multi-Label Image Classification by Co-Learning Transferable Prompt
Authors:Xiangyu Wu, Qing-Yuan Jiang, Yang Yang, Yi-Feng Wu, Qing-Guo Chen, Jianfeng Lu
The recent introduction of prompt tuning based on pre-trained vision-language models has dramatically improved the performance of multi-label image classification. However, some existing strategies that have been explored still have drawbacks, i.e., either exploiting massive labeled visual data at a high cost or using text data only for text prompt tuning and thus failing to learn the diversity of visual knowledge. Hence, the application scenarios of these methods are limited. In this paper, we propose a pseudo-visual prompt~(PVP) module for implicit visual prompt tuning to address this problem. Specifically, we first learn the pseudo-visual prompt for each category, mining diverse visual knowledge by the well-aligned space of pre-trained vision-language models. Then, a co-learning strategy with a dual-adapter module is designed to transfer visual knowledge from pseudo-visual prompt to text prompt, enhancing their visual representation abilities. Experimental results on VOC2007, MS-COCO, and NUSWIDE datasets demonstrate that our method can surpass state-of-the-art~(SOTA) methods across various settings for multi-label image classification tasks. The code is available at https://github.com/njustkmg/PVP.
PDF Accepted for publication at IJCAI 2024; 13 pages; 11 figures
点此查看论文截图
MoVL:Exploring Fusion Strategies for the Domain-Adaptive Application of Pretrained Models in Medical Imaging Tasks
Authors:Haijiang Tian, Jingkun Yue, Xiaohong Liu, Guoxing Yang, Zeyu Jiang, Guangyu Wang
Medical images are often more difficult to acquire than natural images due to the specialism of the equipment and technology, which leads to less medical image datasets. So it is hard to train a strong pretrained medical vision model. How to make the best of natural pretrained vision model and adapt in medical domain still pends. For image classification, a popular method is linear probe (LP). However, LP only considers the output after feature extraction. Yet, there exists a gap between input medical images and natural pretrained vision model. We introduce visual prompting (VP) to fill in the gap, and analyze the strategies of coupling between LP and VP. We design a joint learning loss function containing categorisation loss and discrepancy loss, which describe the variance of prompted and plain images, naming this joint training strategy MoVL (Mixture of Visual Prompting and Linear Probe). We experiment on 4 medical image classification datasets, with two mainstream architectures, ResNet and CLIP. Results shows that without changing the parameters and architecture of backbone model and with less parameters, there is potential for MoVL to achieve full finetune (FF) accuracy (on four medical datasets, average 90.91% for MoVL and 91.13% for FF). On out of distribution medical dataset, our method(90.33%) can outperform FF (85.15%) with absolute 5.18 % lead.
PDF
点此查看论文截图
DualFocus: A Unified Framework for Integrating Positive and Negative Descriptors in Text-based Person Retrieval
Authors:Yuchuan Deng, Zhanpeng Hu, Jiakun Han, Chuang Deng, Qijun Zhao
Text-based person retrieval (TPR) aims to retrieve images of a person from an extensive array of candidates based on a given textual description. The core challenge lies in mapping visual and textual data into a unified latent space. While existing TPR methods concentrate on recognizing explicit and positive characteristics, they often neglect the critical influence of negative descriptors, resulting in potential false positives that fulfill positive criteria but could be excluded by negative descriptors. To alleviate these issues, we introduce DualFocus, a unified framework for integrating positive and negative descriptors to enhance the interpretative accuracy of vision-language foundational models regarding textual queries. DualFocus employs Dual (Positive/Negative) Attribute Prompt Learning (DAPL), which integrates Dual Image-Attribute Contrastive (DIAC) Learning and Sensitive Image-Attributes Matching (SIAM) Learning. This way DualFocus enhances the detection of unseen attributes, thereby boosting retrieval precision. To further achieve a balance between coarse and fine-grained alignment of visual and textual embeddings, we propose the Dynamic Tokenwise Similarity (DTS) loss, which refines the representation of both matching and non-matching descriptions, thereby enhancing the matching process through a detailed and adaptable similarity assessment. By focusing on token-level comparisons, DualFocus significantly outperforms existing techniques in both precision and robustness. The experiment results highlight DualFocus’s superior performance on CUHK-PEDES, ICFG-PEDES, and RSTPReid.
PDF