视频理解


2024-05-14 更新

MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding

Authors:Bo He, Hengduo Li, Young Kyun Jang, Menglin Jia, Xuefei Cao, Ashish Shah, Abhinav Shrivastava, Ser-Nam Lim

With the success of large language models (LLMs), integrating the vision model into LLMs to build vision-language foundation models has gained much more interest recently. However, existing LLM-based large multimodal models (e.g., Video-LLaMA, VideoChat) can only take in a limited number of frames for short video understanding. In this study, we mainly focus on designing an efficient and effective model for long-term video understanding. Instead of trying to process more frames simultaneously like most existing work, we propose to process videos in an online manner and store past video information in a memory bank. This allows our model to reference historical video content for long-term analysis without exceeding LLMs’ context length constraints or GPU memory limits. Our memory bank can be seamlessly integrated into current multimodal LLMs in an off-the-shelf manner. We conduct extensive experiments on various video understanding tasks, such as long-video understanding, video question answering, and video captioning, and our model can achieve state-of-the-art performances across multiple datasets. Code available at https://boheumd.github.io/MA-LMM/.
PDF Accepted at CVPR 2024. Project Page https://boheumd.github.io/MA-LMM/

点此查看论文截图

Uncovering What, Why and How: A Comprehensive Benchmark for Causation Understanding of Video Anomaly

Authors:Hang Du, Sicheng Zhang, Binzhu Xie, Guoshun Nan, Jiayang Zhang, Junrui Xu, Hangyu Liu, Sicong Leng, Jiangming Liu, Hehe Fan, Dajiu Huang, Jing Feng, Linli Chen, Can Zhang, Xuhuan Li, Hao Zhang, Jianhang Chen, Qimei Cui, Xiaofeng Tao

Video anomaly understanding (VAU) aims to automatically comprehend unusual occurrences in videos, thereby enabling various applications such as traffic surveillance and industrial manufacturing. While existing VAU benchmarks primarily concentrate on anomaly detection and localization, our focus is on more practicality, prompting us to raise the following crucial questions: “what anomaly occurred?”, “why did it happen?”, and “how severe is this abnormal event?”. In pursuit of these answers, we present a comprehensive benchmark for Causation Understanding of Video Anomaly (CUVA). Specifically, each instance of the proposed benchmark involves three sets of human annotations to indicate the “what”, “why” and “how” of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. In addition, we also introduce MMEval, a novel evaluation metric designed to better align with human preferences for CUVA, facilitating the measurement of existing LLMs in comprehending the underlying cause and corresponding effect of video anomalies. Finally, we propose a novel prompt-based method that can serve as a baseline approach for the challenging CUVA. We conduct extensive experiments to show the superiority of our evaluation metric and the prompt-based approach. Our code and dataset are available at https://github.com/fesvhtr/CUVA.
PDF Accepted in CVPR2024, Codebase: https://github.com/fesvhtr/CUVA

点此查看论文截图

Foundation Models for Video Understanding: A Survey

Authors:Neelu Madan, Andreas Moegelmose, Rajat Modi, Yogesh S. Rawat, Thomas B. Moeslund

Video Foundation Models (ViFMs) aim to learn a general-purpose representation for various video understanding tasks. Leveraging large-scale datasets and powerful models, ViFMs achieve this by capturing robust and generic features from video data. This survey analyzes over 200 video foundational models, offering a comprehensive overview of benchmarks and evaluation metrics across 14 distinct video tasks categorized into 3 main categories. Additionally, we offer an in-depth performance analysis of these models for the 6 most common video tasks. We categorize ViFMs into three categories: 1) Image-based ViFMs, which adapt existing image models for video tasks, 2) Video-Based ViFMs, which utilize video-specific encoding methods, and 3) Universal Foundational Models (UFMs), which combine multiple modalities (image, video, audio, and text etc.) within a single framework. By comparing the performance of various ViFMs on different tasks, this survey offers valuable insights into their strengths and weaknesses, guiding future advancements in video understanding. Our analysis surprisingly reveals that image-based foundation models consistently outperform video-based models on most video understanding tasks. Additionally, UFMs, which leverage diverse modalities, demonstrate superior performance on video tasks. We share the comprehensive list of ViFMs studied in this work at: \url{https://github.com/NeeluMadan/ViFM_Survey.git}
PDF

点此查看论文截图

Global Motion Understanding in Large-Scale Video Object Segmentation

Authors:Volodymyr Fedynyak, Yaroslav Romanus, Oles Dobosevych, Igor Babin, Roman Riazantsev

In this paper, we show that transferring knowledge from other domains of video understanding combined with large-scale learning can improve robustness of Video Object Segmentation (VOS) under complex circumstances. Namely, we focus on integrating scene global motion knowledge to improve large-scale semi-supervised Video Object Segmentation. Prior works on VOS mostly rely on direct comparison of semantic and contextual features to perform dense matching between current and past frames, passing over actual motion structure. On the other hand, Optical Flow Estimation task aims to approximate the scene motion field, exposing global motion patterns which are typically undiscoverable during all pairs similarity search. We present WarpFormer, an architecture for semi-supervised Video Object Segmentation that exploits existing knowledge in motion understanding to conduct smoother propagation and more accurate matching. Our framework employs a generic pretrained Optical Flow Estimation network whose prediction is used to warp both past frames and instance segmentation masks to the current frame domain. Consequently, warped segmentation masks are refined and fused together aiming to inpaint occluded regions and eliminate artifacts caused by flow field imperfects. Additionally, we employ novel large-scale MOSE 2023 dataset to train model on various complex scenarios. Our method demonstrates strong performance on DAVIS 2016/2017 validation (93.0% and 85.9%), DAVIS 2017 test-dev (80.6%) and YouTube-VOS 2019 validation (83.8%) that is competitive with alternative state-of-the-art methods while using much simpler memory mechanism and instance understanding logic.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录