NeRF/3DGS


2024-05-14 更新

MeGA: Hybrid Mesh-Gaussian Head Avatar for High-Fidelity Rendering and Head Editing

Authors:Cong Wang, Di Kang, He-Yi Sun, Shen-Han Qian, Zi-Xuan Wang, Linchao Bao, Song-Hai Zhang

Creating high-fidelity head avatars from multi-view videos is a core issue for many AR/VR applications. However, existing methods usually struggle to obtain high-quality renderings for all different head components simultaneously since they use one single representation to model components with drastically different characteristics (e.g., skin vs. hair). In this paper, we propose a Hybrid Mesh-Gaussian Head Avatar (MeGA) that models different head components with more suitable representations. Specifically, we select an enhanced FLAME mesh as our facial representation and predict a UV displacement map to provide per-vertex offsets for improved personalized geometric details. To achieve photorealistic renderings, we obtain facial colors using deferred neural rendering and disentangle neural textures into three meaningful parts. For hair modeling, we first build a static canonical hair using 3D Gaussian Splatting. A rigid transformation and an MLP-based deformation field are further applied to handle complex dynamic expressions. Combined with our occlusion-aware blending, MeGA generates higher-fidelity renderings for the whole head and naturally supports more downstream tasks. Experiments on the NeRSemble dataset demonstrate the effectiveness of our designs, outperforming previous state-of-the-art methods and supporting various editing functionalities, including hairstyle alteration and texture editing.
PDF Project page: https://conallwang.github.io/MeGA_Pages/

点此查看论文截图

SAGS: Structure-Aware 3D Gaussian Splatting

Authors:Evangelos Ververas, Rolandos Alexandros Potamias, Jifei Song, Jiankang Deng, Stefanos Zafeiriou

Following the advent of NeRFs, 3D Gaussian Splatting (3D-GS) has paved the way to real-time neural rendering overcoming the computational burden of volumetric methods. Following the pioneering work of 3D-GS, several methods have attempted to achieve compressible and high-fidelity performance alternatives. However, by employing a geometry-agnostic optimization scheme, these methods neglect the inherent 3D structure of the scene, thereby restricting the expressivity and the quality of the representation, resulting in various floating points and artifacts. In this work, we propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene, which reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets. SAGS is founded on a local-global graph representation that facilitates the learning of complex scenes and enforces meaningful point displacements that preserve the scene’s geometry. Additionally, we introduce a lightweight version of SAGS, using a simple yet effective mid-point interpolation scheme, which showcases a compact representation of the scene with up to 24$\times$ size reduction without the reliance on any compression strategies. Extensive experiments across multiple benchmark datasets demonstrate the superiority of SAGS compared to state-of-the-art 3D-GS methods under both rendering quality and model size. Besides, we demonstrate that our structure-aware method can effectively mitigate floating artifacts and irregular distortions of previous methods while obtaining precise depth maps. Project page https://eververas.github.io/SAGS/.
PDF 15 pages, 8 figures, 3 tables

点此查看论文截图

GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting

Authors:Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, Zexiang Xu

We propose GS-LRM, a scalable large reconstruction model that can predict high-quality 3D Gaussian primitives from 2-4 posed sparse images in 0.23 seconds on single A100 GPU. Our model features a very simple transformer-based architecture; we patchify input posed images, pass the concatenated multi-view image tokens through a sequence of transformer blocks, and decode final per-pixel Gaussian parameters directly from these tokens for differentiable rendering. In contrast to previous LRMs that can only reconstruct objects, by predicting per-pixel Gaussians, GS-LRM naturally handles scenes with large variations in scale and complexity. We show that our model can work on both object and scene captures by training it on Objaverse and RealEstate10K respectively. In both scenarios, the models outperform state-of-the-art baselines by a wide margin. We also demonstrate applications of our model in downstream 3D generation tasks. Our project webpage is available at: https://sai-bi.github.io/project/gs-lrm/ .
PDF Project webpage: https://sai-bi.github.io/project/gs-lrm/

点此查看论文截图

Spectrally Pruned Gaussian Fields with Neural Compensation

Authors:Runyi Yang, Zhenxin Zhu, Zhou Jiang, Baijun Ye, Xiaoxue Chen, Yifei Zhang, Yuantao Chen, Jian Zhao, Hao Zhao

Recently, 3D Gaussian Splatting, as a novel 3D representation, has garnered attention for its fast rendering speed and high rendering quality. However, this comes with high memory consumption, e.g., a well-trained Gaussian field may utilize three million Gaussian primitives and over 700 MB of memory. We credit this high memory footprint to the lack of consideration for the relationship between primitives. In this paper, we propose a memory-efficient Gaussian field named SUNDAE with spectral pruning and neural compensation. On one hand, we construct a graph on the set of Gaussian primitives to model their relationship and design a spectral down-sampling module to prune out primitives while preserving desired signals. On the other hand, to compensate for the quality loss of pruning Gaussians, we exploit a lightweight neural network head to mix splatted features, which effectively compensates for quality losses while capturing the relationship between primitives in its weights. We demonstrate the performance of SUNDAE with extensive results. For example, SUNDAE can achieve 26.80 PSNR at 145 FPS using 104 MB memory while the vanilla Gaussian splatting algorithm achieves 25.60 PSNR at 160 FPS using 523 MB memory, on the Mip-NeRF360 dataset. Codes are publicly available at https://runyiyang.github.io/projects/SUNDAE/.
PDF Code: https://github.com/RunyiYang/SUNDAE Project page: https://runyiyang.github.io/projects/SUNDAE/

点此查看论文截图

Multi-view Action Recognition via Directed Gromov-Wasserstein Discrepancy

Authors:Hoang-Quan Nguyen, Thanh-Dat Truong, Khoa Luu

Action recognition has become one of the popular research topics in computer vision. There are various methods based on Convolutional Networks and self-attention mechanisms as Transformers to solve both spatial and temporal dimensions problems of action recognition tasks that achieve competitive performances. However, these methods lack a guarantee of the correctness of the action subject that the models give attention to, i.e., how to ensure an action recognition model focuses on the proper action subject to make a reasonable action prediction. In this paper, we propose a multi-view attention consistency method that computes the similarity between two attentions from two different views of the action videos using Directed Gromov-Wasserstein Discrepancy. Furthermore, our approach applies the idea of Neural Radiance Field to implicitly render the features from novel views when training on single-view datasets. Therefore, the contributions in this work are three-fold. Firstly, we introduce the multi-view attention consistency to solve the problem of reasonable prediction in action recognition. Secondly, we define a new metric for multi-view consistent attention using Directed Gromov-Wasserstein Discrepancy. Thirdly, we built an action recognition model based on Video Transformers and Neural Radiance Fields. Compared to the recent action recognition methods, the proposed approach achieves state-of-the-art results on three large-scale datasets, i.e., Jester, Something-Something V2, and Kinetics-400.
PDF

点此查看论文截图

WateRF: Robust Watermarks in Radiance Fields for Protection of Copyrights

Authors:Youngdong Jang, Dong In Lee, MinHyuk Jang, Jong Wook Kim, Feng Yang, Sangpil Kim

The advances in the Neural Radiance Fields (NeRF) research offer extensive applications in diverse domains, but protecting their copyrights has not yet been researched in depth. Recently, NeRF watermarking has been considered one of the pivotal solutions for safely deploying NeRF-based 3D representations. However, existing methods are designed to apply only to implicit or explicit NeRF representations. In this work, we introduce an innovative watermarking method that can be employed in both representations of NeRF. This is achieved by fine-tuning NeRF to embed binary messages in the rendering process. In detail, we propose utilizing the discrete wavelet transform in the NeRF space for watermarking. Furthermore, we adopt a deferred back-propagation technique and introduce a combination with the patch-wise loss to improve rendering quality and bit accuracy with minimum trade-offs. We evaluate our method in three different aspects: capacity, invisibility, and robustness of the embedded watermarks in the 2D-rendered images. Our method achieves state-of-the-art performance with faster training speed over the compared state-of-the-art methods.
PDF

点此查看论文截图

Rip-NeRF: Anti-aliasing Radiance Fields with Ripmap-Encoded Platonic Solids

Authors:Junchen Liu, Wenbo Hu, Zhuo Yang, Jianteng Chen, Guoliang Wang, Xiaoxue Chen, Yantong Cai, Huan-ang Gao, Hao Zhao

Despite significant advancements in Neural Radiance Fields (NeRFs), the renderings may still suffer from aliasing and blurring artifacts, since it remains a fundamental challenge to effectively and efficiently characterize anisotropic areas induced by the cone-casting procedure. This paper introduces a Ripmap-Encoded Platonic Solid representation to precisely and efficiently featurize 3D anisotropic areas, achieving high-fidelity anti-aliasing renderings. Central to our approach are two key components: Platonic Solid Projection and Ripmap encoding. The Platonic Solid Projection factorizes the 3D space onto the unparalleled faces of a certain Platonic solid, such that the anisotropic 3D areas can be projected onto planes with distinguishable characterization. Meanwhile, each face of the Platonic solid is encoded by the Ripmap encoding, which is constructed by anisotropically pre-filtering a learnable feature grid, to enable featurzing the projected anisotropic areas both precisely and efficiently by the anisotropic area-sampling. Extensive experiments on both well-established synthetic datasets and a newly captured real-world dataset demonstrate that our Rip-NeRF attains state-of-the-art rendering quality, particularly excelling in the fine details of repetitive structures and textures, while maintaining relatively swift training times.
PDF SIGGRAPH 2024, Project page: https://junchenliu77.github.io/Rip-NeRF , Code: https://github.com/JunchenLiu77/Rip-NeRF

点此查看论文截图

ActiveNeuS: Active 3D Reconstruction using Neural Implicit Surface Uncertainty

Authors:Hyunseo Kim, Hyeonseo Yang, Taekyung Kim, YoonSung Kim, Jin-Hwa Kim, Byoung-Tak Zhang

Active learning in 3D scene reconstruction has been widely studied, as selecting informative training views is critical for the reconstruction. Recently, Neural Radiance Fields (NeRF) variants have shown performance increases in active 3D reconstruction using image rendering or geometric uncertainty. However, the simultaneous consideration of both uncertainties in selecting informative views remains unexplored, while utilizing different types of uncertainty can reduce the bias that arises in the early training stage with sparse inputs. In this paper, we propose ActiveNeuS, which evaluates candidate views considering both uncertainties. ActiveNeuS provides a way to accumulate image rendering uncertainty while avoiding the bias that the estimated densities can introduce. ActiveNeuS computes the neural implicit surface uncertainty, providing the color uncertainty along with the surface information. It efficiently handles the bias by using the surface information and a grid, enabling the fast selection of diverse viewpoints. Our method outperforms previous works on popular datasets, Blender and DTU, showing that the views selected by ActiveNeuS significantly improve performance.
PDF

点此查看论文截图

TK-Planes: Tiered K-Planes with High Dimensional Feature Vectors for Dynamic UAV-based Scenes

Authors:Christopher Maxey, Jaehoon Choi, Yonghan Lee, Hyungtae Lee, Dinesh Manocha, Heesung Kwon

In this paper, we present a new approach to bridge the domain gap between synthetic and real-world data for un- manned aerial vehicle (UAV)-based perception. Our formu- lation is designed for dynamic scenes, consisting of moving objects or human actions, where the goal is to recognize the pose or actions. We propose an extension of K-Planes Neural Radiance Field (NeRF), wherein our algorithm stores a set of tiered feature vectors. The tiered feature vectors are generated to effectively model conceptual information about a scene as well as an image decoder that transforms output feature maps into RGB images. Our technique leverages the information amongst both static and dynamic objects within a scene and is able to capture salient scene attributes of high altitude videos. We evaluate its performance on challenging datasets, including Okutama Action and UG2, and observe considerable improvement in accuracy over state of the art aerial perception algorithms.
PDF 8 pages, submitted to IROS2024

点此查看论文截图

Blending Distributed NeRFs with Tri-stage Robust Pose Optimization

Authors:Baijun Ye, Caiyun Liu, Xiaoyu Ye, Yuantao Chen, Yuhai Wang, Zike Yan, Yongliang Shi, Hao Zhao, Guyue Zhou

Due to the limited model capacity, leveraging distributed Neural Radiance Fields (NeRFs) for modeling extensive urban environments has become a necessity. However, current distributed NeRF registration approaches encounter aliasing artifacts, arising from discrepancies in rendering resolutions and suboptimal pose precision. These factors collectively deteriorate the fidelity of pose estimation within NeRF frameworks, resulting in occlusion artifacts during the NeRF blending stage. In this paper, we present a distributed NeRF system with tri-stage pose optimization. In the first stage, precise poses of images are achieved by bundle adjusting Mip-NeRF 360 with a coarse-to-fine strategy. In the second stage, we incorporate the inverting Mip-NeRF 360, coupled with the truncated dynamic low-pass filter, to enable the achievement of robust and precise poses, termed Frame2Model optimization. On top of this, we obtain a coarse transformation between NeRFs in different coordinate systems. In the third stage, we fine-tune the transformation between NeRFs by Model2Model pose optimization. After obtaining precise transformation parameters, we proceed to implement NeRF blending, showcasing superior performance metrics in both real-world and simulation scenarios. Codes and data will be publicly available at https://github.com/boilcy/Distributed-NeRF.
PDF

点此查看论文截图

DistGrid: Scalable Scene Reconstruction with Distributed Multi-resolution Hash Grid

Authors:Sidun Liu, Peng Qiao, Zongxin Ye, Wenyu Li, Yong Dou

Neural Radiance Field~(NeRF) achieves extremely high quality in object-scaled and indoor scene reconstruction. However, there exist some challenges when reconstructing large-scale scenes. MLP-based NeRFs suffer from limited network capacity, while volume-based NeRFs are heavily memory-consuming when the scene resolution increases. Recent approaches propose to geographically partition the scene and learn each sub-region using an individual NeRF. Such partitioning strategies help volume-based NeRF exceed the single GPU memory limit and scale to larger scenes. However, this approach requires multiple background NeRF to handle out-of-partition rays, which leads to redundancy of learning. Inspired by the fact that the background of current partition is the foreground of adjacent partition, we propose a scalable scene reconstruction method based on joint Multi-resolution Hash Grids, named DistGrid. In this method, the scene is divided into multiple closely-paved yet non-overlapped Axis-Aligned Bounding Boxes, and a novel segmented volume rendering method is proposed to handle cross-boundary rays, thereby eliminating the need for background NeRFs. The experiments demonstrate that our method outperforms existing methods on all evaluated large-scale scenes, and provides visually plausible scene reconstruction. The scalability of our method on reconstruction quality is further evaluated qualitatively and quantitatively.
PDF Originally submitted to Siggraph Asia 2023

点此查看论文截图

Tactile-Augmented Radiance Fields

Authors:Yiming Dou, Fengyu Yang, Yi Liu, Antonio Loquercio, Andrew Owens

We present a scene representation, which we call a tactile-augmented radiance field (TaRF), that brings vision and touch into a shared 3D space. This representation can be used to estimate the visual and tactile signals for a given 3D position within a scene. We capture a scene’s TaRF from a collection of photos and sparsely sampled touch probes. Our approach makes use of two insights: (i) common vision-based touch sensors are built on ordinary cameras and thus can be registered to images using methods from multi-view geometry, and (ii) visually and structurally similar regions of a scene share the same tactile features. We use these insights to register touch signals to a captured visual scene, and to train a conditional diffusion model that, provided with an RGB-D image rendered from a neural radiance field, generates its corresponding tactile signal. To evaluate our approach, we collect a dataset of TaRFs. This dataset contains more touch samples than previous real-world datasets, and it provides spatially aligned visual signals for each captured touch signal. We demonstrate the accuracy of our cross-modal generative model and the utility of the captured visual-tactile data on several downstream tasks. Project page: https://dou-yiming.github.io/TaRF
PDF CVPR 2024, Project page: https://dou-yiming.github.io/TaRF, Code: https://github.com/Dou-Yiming/TaRF/

点此查看论文截图

RPBG: Towards Robust Neural Point-based Graphics in the Wild

Authors:Qingtian Zhu, Zizhuang Wei, Zhongtian Zheng, Yifan Zhan, Zhuyu Yao, Jiawang Zhang, Kejian Wu, Yinqiang Zheng

Point-based representations have recently gained popularity in novel view synthesis, for their unique advantages, e.g., intuitive geometric representation, simple manipulation, and faster convergence. However, based on our observation, these point-based neural re-rendering methods are only expected to perform well under ideal conditions and suffer from noisy, patchy points and unbounded scenes, which are challenging to handle but defacto common in real applications. To this end, we revisit one such influential method, known as Neural Point-based Graphics (NPBG), as our baseline, and propose Robust Point-based Graphics (RPBG). We in-depth analyze the factors that prevent NPBG from achieving satisfactory renderings on generic datasets, and accordingly reform the pipeline to make it more robust to varying datasets in-the-wild. Inspired by the practices in image restoration, we greatly enhance the neural renderer to enable the attention-based correction of point visibility and the inpainting of incomplete rasterization, with only acceptable overheads. We also seek for a simple and lightweight alternative for environment modeling and an iterative method to alleviate the problem of poor geometry. By thorough evaluation on a wide range of datasets with different shooting conditions and camera trajectories, RPBG stably outperforms the baseline by a large margin, and exhibits its great robustness over state-of-the-art NeRF-based variants. Code available at https://github.com/QT-Zhu/RPBG.
PDF

点此查看论文截图

NeRFFaceSpeech: One-shot Audio-driven 3D Talking Head Synthesis via Generative Prior

Authors:Gihoon Kim, Kwanggyoon Seo, Sihun Cha, Junyong Noh

Audio-driven talking head generation is advancing from 2D to 3D content. Notably, Neural Radiance Field (NeRF) is in the spotlight as a means to synthesize high-quality 3D talking head outputs. Unfortunately, this NeRF-based approach typically requires a large number of paired audio-visual data for each identity, thereby limiting the scalability of the method. Although there have been attempts to generate audio-driven 3D talking head animations with a single image, the results are often unsatisfactory due to insufficient information on obscured regions in the image. In this paper, we mainly focus on addressing the overlooked aspect of 3D consistency in the one-shot, audio-driven domain, where facial animations are synthesized primarily in front-facing perspectives. We propose a novel method, NeRFFaceSpeech, which enables to produce high-quality 3D-aware talking head. Using prior knowledge of generative models combined with NeRF, our method can craft a 3D-consistent facial feature space corresponding to a single image. Our spatial synchronization method employs audio-correlated vertex dynamics of a parametric face model to transform static image features into dynamic visuals through ray deformation, ensuring realistic 3D facial motion. Moreover, we introduce LipaintNet that can replenish the lacking information in the inner-mouth area, which can not be obtained from a given single image. The network is trained in a self-supervised manner by utilizing the generative capabilities without additional data. The comprehensive experiments demonstrate the superiority of our method in generating audio-driven talking heads from a single image with enhanced 3D consistency compared to previous approaches. In addition, we introduce a quantitative way of measuring the robustness of a model against pose changes for the first time, which has been possible only qualitatively.
PDF 11 pages, 5 figures

点此查看论文截图

FastScene: Text-Driven Fast 3D Indoor Scene Generation via Panoramic Gaussian Splatting

Authors:Yikun Ma, Dandan Zhan, Zhi Jin

Text-driven 3D indoor scene generation holds broad applications, ranging from gaming and smart homes to AR/VR applications. Fast and high-fidelity scene generation is paramount for ensuring user-friendly experiences. However, existing methods are characterized by lengthy generation processes or necessitate the intricate manual specification of motion parameters, which introduces inconvenience for users. Furthermore, these methods often rely on narrow-field viewpoint iterative generations, compromising global consistency and overall scene quality. To address these issues, we propose FastScene, a framework for fast and higher-quality 3D scene generation, while maintaining the scene consistency. Specifically, given a text prompt, we generate a panorama and estimate its depth, since the panorama encompasses information about the entire scene and exhibits explicit geometric constraints. To obtain high-quality novel views, we introduce the Coarse View Synthesis (CVS) and Progressive Novel View Inpainting (PNVI) strategies, ensuring both scene consistency and view quality. Subsequently, we utilize Multi-View Projection (MVP) to form perspective views, and apply 3D Gaussian Splatting (3DGS) for scene reconstruction. Comprehensive experiments demonstrate FastScene surpasses other methods in both generation speed and quality with better scene consistency. Notably, guided only by a text prompt, FastScene can generate a 3D scene within a mere 15 minutes, which is at least one hour faster than state-of-the-art methods, making it a paradigm for user-friendly scene generation.
PDF Accepted by IJCAI-2024

点此查看论文截图

Residual-NeRF: Learning Residual NeRFs for Transparent Object Manipulation

Authors:Bardienus P. Duisterhof, Yuemin Mao, Si Heng Teng, Jeffrey Ichnowski

Transparent objects are ubiquitous in industry, pharmaceuticals, and households. Grasping and manipulating these objects is a significant challenge for robots. Existing methods have difficulty reconstructing complete depth maps for challenging transparent objects, leaving holes in the depth reconstruction. Recent work has shown neural radiance fields (NeRFs) work well for depth perception in scenes with transparent objects, and these depth maps can be used to grasp transparent objects with high accuracy. NeRF-based depth reconstruction can still struggle with especially challenging transparent objects and lighting conditions. In this work, we propose Residual-NeRF, a method to improve depth perception and training speed for transparent objects. Robots often operate in the same area, such as a kitchen. By first learning a background NeRF of the scene without transparent objects to be manipulated, we reduce the ambiguity faced by learning the changes with the new object. We propose training two additional networks: a residual NeRF learns to infer residual RGB values and densities, and a Mixnet learns how to combine background and residual NeRFs. We contribute synthetic and real experiments that suggest Residual-NeRF improves depth perception of transparent objects. The results on synthetic data suggest Residual-NeRF outperforms the baselines with a 46.1% lower RMSE and a 29.5% lower MAE. Real-world qualitative experiments suggest Residual-NeRF leads to more robust depth maps with less noise and fewer holes. Website: https://residual-nerf.github.io
PDF

点此查看论文截图

Aerial-NeRF: Adaptive Spatial Partitioning and Sampling for Large-Scale Aerial Rendering

Authors:Xiaohan Zhang, Yukui Qiu, Zhenyu Sun, Qi Liu

Recent progress in large-scale scene rendering has yielded Neural Radiance Fields (NeRF)-based models with an impressive ability to synthesize scenes across small objects and indoor scenes. Nevertheless, extending this idea to large-scale aerial rendering poses two critical problems. Firstly, a single NeRF cannot render the entire scene with high-precision for complex large-scale aerial datasets since the sampling range along each view ray is insufficient to cover buildings adequately. Secondly, traditional NeRFs are infeasible to train on one GPU to enable interactive fly-throughs for modeling massive images. Instead, existing methods typically separate the whole scene into multiple regions and train a NeRF on each region, which are unaccustomed to different flight trajectories and difficult to achieve fast rendering. To that end, we propose Aerial-NeRF with three innovative modifications for jointly adapting NeRF in large-scale aerial rendering: (1) Designing an adaptive spatial partitioning and selection method based on drones’ poses to adapt different flight trajectories; (2) Using similarity of poses instead of (expert) network for rendering speedup to determine which region a new viewpoint belongs to; (3) Developing an adaptive sampling approach for rendering performance improvement to cover the entire buildings at different heights. Extensive experiments have conducted to verify the effectiveness and efficiency of Aerial-NeRF, and new state-of-the-art results have been achieved on two public large-scale aerial datasets and presented SCUTic dataset. Note that our model allows us to perform rendering over 4 times as fast as compared to multiple competitors. Our dataset, code, and model are publicly available at https://drliuqi.github.io/.
PDF

点此查看论文截图

OneTo3D: One Image to Re-editable Dynamic 3D Model and Video Generation

Authors:Jinwei Lin

One image to editable dynamic 3D model and video generation is novel direction and change in the research area of single image to 3D representation or 3D reconstruction of image. Gaussian Splatting has demonstrated its advantages in implicit 3D reconstruction, compared with the original Neural Radiance Fields. As the rapid development of technologies and principles, people tried to used the Stable Diffusion models to generate targeted models with text instructions. However, using the normal implicit machine learning methods is hard to gain the precise motions and actions control, further more, it is difficult to generate a long content and semantic continuous 3D video. To address this issue, we propose the OneTo3D, a method and theory to used one single image to generate the editable 3D model and generate the targeted semantic continuous time-unlimited 3D video. We used a normal basic Gaussian Splatting model to generate the 3D model from a single image, which requires less volume of video memory and computer calculation ability. Subsequently, we designed an automatic generation and self-adaptive binding mechanism for the object armature. Combined with the re-editable motions and actions analyzing and controlling algorithm we proposed, we can achieve a better performance than the SOTA projects in the area of building the 3D model precise motions and actions control, and generating a stable semantic continuous time-unlimited 3D video with the input text instructions. Here we will analyze the detailed implementation methods and theories analyses. Relative comparisons and conclusions will be presented. The project code is open source.
PDF 24 pages, 13 figures, 2 tables

点此查看论文截图

Direct Learning of Mesh and Appearance via 3D Gaussian Splatting

Authors:Ancheng Lin, Jun Li

Accurately reconstructing a 3D scene including explicit geometry information is both attractive and challenging. Geometry reconstruction can benefit from incorporating differentiable appearance models, such as Neural Radiance Fields and 3D Gaussian Splatting (3DGS). In this work, we propose a learnable scene model that incorporates 3DGS with an explicit geometry representation, namely a mesh. Our model learns the mesh and appearance in an end-to-end manner, where we bind 3D Gaussians to the mesh faces and perform differentiable rendering of 3DGS to obtain photometric supervision. The model creates an effective information pathway to supervise the learning of the scene, including the mesh. Experimental results demonstrate that the learned scene model not only achieves state-of-the-art rendering quality but also supports manipulation using the explicit mesh. In addition, our model has a unique advantage in adapting to scene updates, thanks to the end-to-end learning of both mesh and appearance.
PDF

点此查看论文截图

TD-NeRF: Novel Truncated Depth Prior for Joint Camera Pose and Neural Radiance Field Optimization

Authors:Zhen Tan, Zongtan Zhou, Yangbing Ge, Zi Wang, Xieyuanli Chen, Dewen Hu

The reliance on accurate camera poses is a significant barrier to the widespread deployment of Neural Radiance Fields (NeRF) models for 3D reconstruction and SLAM tasks. The existing method introduces monocular depth priors to jointly optimize the camera poses and NeRF, which fails to fully exploit the depth priors and neglects the impact of their inherent noise. In this paper, we propose Truncated Depth NeRF (TD-NeRF), a novel approach that enables training NeRF from unknown camera poses - by jointly optimizing learnable parameters of the radiance field and camera poses. Our approach explicitly utilizes monocular depth priors through three key advancements: 1) we propose a novel depth-based ray sampling strategy based on the truncated normal distribution, which improves the convergence speed and accuracy of pose estimation; 2) to circumvent local minima and refine depth geometry, we introduce a coarse-to-fine training strategy that progressively improves the depth precision; 3) we propose a more robust inter-frame point constraint that enhances robustness against depth noise during training. The experimental results on three datasets demonstrate that TD-NeRF achieves superior performance in the joint optimization of camera pose and NeRF, surpassing prior works, and generates more accurate depth geometry. The implementation of our method has been released at https://github.com/nubot-nudt/TD-NeRF.
PDF

点此查看论文截图

Point Resampling and Ray Transformation Aid to Editable NeRF Models

Authors:Zhenyang Li, Zilong Chen, Feifan Qu, Mingqing Wang, Yizhou Zhao, Kai Zhang, Yifan Peng

In NeRF-aided editing tasks, object movement presents difficulties in supervision generation due to the introduction of variability in object positions. Moreover, the removal operations of certain scene objects often lead to empty regions, presenting challenges for NeRF models in inpainting them effectively. We propose an implicit ray transformation strategy, allowing for direct manipulation of the 3D object’s pose by operating on the neural-point in NeRF rays. To address the challenge of inpainting potential empty regions, we present a plug-and-play inpainting module, dubbed differentiable neural-point resampling (DNR), which interpolates those regions in 3D space at the original ray locations within the implicit space, thereby facilitating object removal & scene inpainting tasks. Importantly, employing DNR effectively narrows the gap between ground truth and predicted implicit features, potentially increasing the mutual information (MI) of the features across rays. Then, we leverage DNR and ray transformation to construct a point-based editable NeRF pipeline PR^2T-NeRF. Results primarily evaluated on 3D object removal & inpainting tasks indicate that our pipeline achieves state-of-the-art performance. In addition, our pipeline supports high-quality rendering visualization for diverse editing operations without necessitating extra supervision.
PDF

点此查看论文截图

LayGA: Layered Gaussian Avatars for Animatable Clothing Transfer

Authors:Siyou Lin, Zhe Li, Zhaoqi Su, Zerong Zheng, Hongwen Zhang, Yebin Liu

Animatable clothing transfer, aiming at dressing and animating garments across characters, is a challenging problem. Most human avatar works entangle the representations of the human body and clothing together, which leads to difficulties for virtual try-on across identities. What’s worse, the entangled representations usually fail to exactly track the sliding motion of garments. To overcome these limitations, we present Layered Gaussian Avatars (LayGA), a new representation that formulates body and clothing as two separate layers for photorealistic animatable clothing transfer from multi-view videos. Our representation is built upon the Gaussian map-based avatar for its excellent representation power of garment details. However, the Gaussian map produces unstructured 3D Gaussians distributed around the actual surface. The absence of a smooth explicit surface raises challenges in accurate garment tracking and collision handling between body and garments. Therefore, we propose two-stage training involving single-layer reconstruction and multi-layer fitting. In the single-layer reconstruction stage, we propose a series of geometric constraints to reconstruct smooth surfaces and simultaneously obtain the segmentation between body and clothing. Next, in the multi-layer fitting stage, we train two separate models to represent body and clothing and utilize the reconstructed clothing geometries as 3D supervision for more accurate garment tracking. Furthermore, we propose geometry and rendering layers for both high-quality geometric reconstruction and high-fidelity rendering. Overall, the proposed LayGA realizes photorealistic animations and virtual try-on, and outperforms other baseline methods. Our project page is https://jsnln.github.io/layga/index.html.
PDF SIGGRAPH 2024 conference track

点此查看论文截图

Synergistic Integration of Coordinate Network and Tensorial Feature for Improving Neural Radiance Fields from Sparse Inputs

Authors:Mingyu Kim, Jun-Seong Kim, Se-Young Yun, Jin-Hwa Kim

The multi-plane representation has been highlighted for its fast training and inference across static and dynamic neural radiance fields. This approach constructs relevant features via projection onto learnable grids and interpolating adjacent vertices. However, it has limitations in capturing low-frequency details and tends to overuse parameters for low-frequency features due to its bias toward fine details, despite its multi-resolution concept. This phenomenon leads to instability and inefficiency when training poses are sparse. In this work, we propose a method that synergistically integrates multi-plane representation with a coordinate-based network known for strong bias toward low-frequency signals. The coordinate-based network is responsible for capturing low-frequency details, while the multi-plane representation focuses on capturing fine-grained details. We demonstrate that using residual connections between them seamlessly preserves their own inherent properties. Additionally, the proposed progressive training scheme accelerates the disentanglement of these two features. We empirically show that the proposed method achieves comparable results to explicit encoding with fewer parameters, and particularly, it outperforms others for the static and dynamic NeRFs under sparse inputs.
PDF ICML2024 ; Project page is accessible at https://mingyukim87.github.io/SynergyNeRF ; Code is available at https://github.com/MingyuKim87/SynergyNeRF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录