Human reconstruction


2024-05-14 更新

HiLo: Detailed and Robust 3D Clothed Human Reconstruction with High-and Low-Frequency Information of Parametric Models

Authors:Yifan Yang, Dong Liu, Shuhai Zhang, Zeshuai Deng, Zixiong Huang, Mingkui Tan

Reconstructing 3D clothed human involves creating a detailed geometry of individuals in clothing, with applications ranging from virtual try-on, movies, to games. To enable practical and widespread applications, recent advances propose to generate a clothed human from an RGB image. However, they struggle to reconstruct detailed and robust avatars simultaneously. We empirically find that the high-frequency (HF) and low-frequency (LF) information from a parametric model has the potential to enhance geometry details and improve robustness to noise, respectively. Based on this, we propose HiLo, namely clothed human reconstruction with high- and low-frequency information, which contains two components. 1) To recover detailed geometry using HF information, we propose a progressive HF Signed Distance Function to enhance the detailed 3D geometry of a clothed human. We analyze that our progressive learning manner alleviates large gradients that hinder model convergence. 2) To achieve robust reconstruction against inaccurate estimation of the parametric model by using LF information, we propose a spatial interaction implicit function. This function effectively exploits the complementary spatial information from a low-resolution voxel grid of the parametric model. Experimental results demonstrate that HiLo outperforms the state-of-the-art methods by 10.43% and 9.54% in terms of Chamfer distance on the Thuman2.0 and CAPE datasets, respectively. Additionally, HiLo demonstrates robustness to noise from the parametric model, challenging poses, and various clothing styles.
PDF CVPR 2024 Accepted Paper

点此查看论文截图

PGAHum: Prior-Guided Geometry and Appearance Learning for High-Fidelity Animatable Human Reconstruction

Authors:Hao Wang, Qingshan Xu, Hongyuan Chen, Rui Ma

Recent techniques on implicit geometry representation learning and neural rendering have shown promising results for 3D clothed human reconstruction from sparse video inputs. However, it is still challenging to reconstruct detailed surface geometry and even more difficult to synthesize photorealistic novel views with animated human poses. In this work, we introduce PGAHum, a prior-guided geometry and appearance learning framework for high-fidelity animatable human reconstruction. We thoroughly exploit 3D human priors in three key modules of PGAHum to achieve high-quality geometry reconstruction with intricate details and photorealistic view synthesis on unseen poses. First, a prior-based implicit geometry representation of 3D human, which contains a delta SDF predicted by a tri-plane network and a base SDF derived from the prior SMPL model, is proposed to model the surface details and the body shape in a disentangled manner. Second, we introduce a novel prior-guided sampling strategy that fully leverages the prior information of the human pose and body to sample the query points within or near the body surface. By avoiding unnecessary learning in the empty 3D space, the neural rendering can recover more appearance details. Last, we propose a novel iterative backward deformation strategy to progressively find the correspondence for the query point in observation space. A skinning weights prediction model is learned based on the prior provided by the SMPL model to achieve the iterative backward LBS deformation. Extensive quantitative and qualitative comparisons on various datasets are conducted and the results demonstrate the superiority of our framework. Ablation studies also verify the effectiveness of each scheme for geometry and appearance learning.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录