对抗攻击


2024-05-14 更新

How Real Is Real? A Human Evaluation Framework for Unrestricted Adversarial Examples

Authors:Dren Fazlija, Arkadij Orlov, Johanna Schrader, Monty-Maximilian Zühlke, Michael Rohs, Daniel Kudenko

With an ever-increasing reliance on machine learning (ML) models in the real world, adversarial examples threaten the safety of AI-based systems such as autonomous vehicles. In the image domain, they represent maliciously perturbed data points that look benign to humans (i.e., the image modification is not noticeable) but greatly mislead state-of-the-art ML models. Previously, researchers ensured the imperceptibility of their altered data points by restricting perturbations via $\ell_p$ norms. However, recent publications claim that creating natural-looking adversarial examples without such restrictions is also possible. With much more freedom to instill malicious information into data, these unrestricted adversarial examples can potentially overcome traditional defense strategies as they are not constrained by the limitations or patterns these defenses typically recognize and mitigate. This allows attackers to operate outside of expected threat models. However, surveying existing image-based methods, we noticed a need for more human evaluations of the proposed image modifications. Based on existing human-assessment frameworks for image generation quality, we propose SCOOTER - an evaluation framework for unrestricted image-based attacks. It provides researchers with guidelines for conducting statistically significant human experiments, standardized questions, and a ready-to-use implementation. We propose a framework that allows researchers to analyze how imperceptible their unrestricted attacks truly are.
PDF 3 pages, 3 figures, AAAI 2024 Spring Symposium on User-Aligned Assessment of Adaptive AI Systems

点此查看论文截图

PAD: Patch-Agnostic Defense against Adversarial Patch Attacks

Authors:Lihua Jing, Rui Wang, Wenqi Ren, Xin Dong, Cong Zou

Adversarial patch attacks present a significant threat to real-world object detectors due to their practical feasibility. Existing defense methods, which rely on attack data or prior knowledge, struggle to effectively address a wide range of adversarial patches. In this paper, we show two inherent characteristics of adversarial patches, semantic independence and spatial heterogeneity, independent of their appearance, shape, size, quantity, and location. Semantic independence indicates that adversarial patches operate autonomously within their semantic context, while spatial heterogeneity manifests as distinct image quality of the patch area that differs from original clean image due to the independent generation process. Based on these observations, we propose PAD, a novel adversarial patch localization and removal method that does not require prior knowledge or additional training. PAD offers patch-agnostic defense against various adversarial patches, compatible with any pre-trained object detectors. Our comprehensive digital and physical experiments involving diverse patch types, such as localized noise, printable, and naturalistic patches, exhibit notable improvements over state-of-the-art works. Our code is available at https://github.com/Lihua-Jing/PAD.
PDF Accepted by CVPR 2024

点此查看论文截图

Defending Spiking Neural Networks against Adversarial Attacks through Image Purification

Authors:Weiran Chen, Qi Sun, Qi Xu

Spiking Neural Networks (SNNs) aim to bridge the gap between neuroscience and machine learning by emulating the structure of the human nervous system. However, like convolutional neural networks, SNNs are vulnerable to adversarial attacks. To tackle the challenge, we propose a biologically inspired methodology to enhance the robustness of SNNs, drawing insights from the visual masking effect and filtering theory. First, an end-to-end SNN-based image purification model is proposed to defend against adversarial attacks, including a noise extraction network and a non-blind denoising network. The former network extracts noise features from noisy images, while the latter component employs a residual U-Net structure to reconstruct high-quality noisy images and generate clean images. Simultaneously, a multi-level firing SNN based on Squeeze-and-Excitation Network is introduced to improve the robustness of the classifier. Crucially, the proposed image purification network serves as a pre-processing module, avoiding modifications to classifiers. Unlike adversarial training, our method is highly flexible and can be seamlessly integrated with other defense strategies. Experimental results on various datasets demonstrate that the proposed methodology outperforms state-of-the-art baselines in terms of defense effectiveness, training time, and resource consumption.
PDF 8 pages, 5 figures, ECAI2024 under review

点此查看论文截图

Probing Unlearned Diffusion Models: A Transferable Adversarial Attack Perspective

Authors:Xiaoxuan Han, Songlin Yang, Wei Wang, Yang Li, Jing Dong

Advanced text-to-image diffusion models raise safety concerns regarding identity privacy violation, copyright infringement, and Not Safe For Work content generation. Towards this, unlearning methods have been developed to erase these involved concepts from diffusion models. However, these unlearning methods only shift the text-to-image mapping and preserve the visual content within the generative space of diffusion models, leaving a fatal flaw for restoring these erased concepts. This erasure trustworthiness problem needs probe, but previous methods are sub-optimal from two perspectives: (1) Lack of transferability: Some methods operate within a white-box setting, requiring access to the unlearned model. And the learned adversarial input often fails to transfer to other unlearned models for concept restoration; (2) Limited attack: The prompt-level methods struggle to restore narrow concepts from unlearned models, such as celebrity identity. Therefore, this paper aims to leverage the transferability of the adversarial attack to probe the unlearning robustness under a black-box setting. This challenging scenario assumes that the unlearning method is unknown and the unlearned model is inaccessible for optimization, requiring the attack to be capable of transferring across different unlearned models. Specifically, we employ an adversarial search strategy to search for the adversarial embedding which can transfer across different unlearned models. This strategy adopts the original Stable Diffusion model as a surrogate model to iteratively erase and search for embeddings, enabling it to find the embedding that can restore the target concept for different unlearning methods. Extensive experiments demonstrate the transferability of the searched adversarial embedding across several state-of-the-art unlearning methods and its effectiveness for different levels of concepts.
PDF

点此查看论文截图

BB-Patch: BlackBox Adversarial Patch-Attack using Zeroth-Order Optimization

Authors:Satyadwyoom Kumar, Saurabh Gupta, Arun Balaji Buduru

Deep Learning has become popular due to its vast applications in almost all domains. However, models trained using deep learning are prone to failure for adversarial samples and carry a considerable risk in sensitive applications. Most of these adversarial attack strategies assume that the adversary has access to the training data, the model parameters, and the input during deployment, hence, focus on perturbing the pixel level information present in the input image. Adversarial Patches were introduced to the community which helped in bringing out the vulnerability of deep learning models in a much more pragmatic manner but here the attacker has a white-box access to the model parameters. Recently, there has been an attempt to develop these adversarial attacks using black-box techniques. However, certain assumptions such as availability large training data is not valid for a real-life scenarios. In a real-life scenario, the attacker can only assume the type of model architecture used from a select list of state-of-the-art architectures while having access to only a subset of input dataset. Hence, we propose an black-box adversarial attack strategy that produces adversarial patches which can be applied anywhere in the input image to perform an adversarial attack.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录