场景文本检测识别


2024-05-14 更新

Choose What You Need: Disentangled Representation Learning for Scene Text Recognition, Removal and Editing

Authors:Boqiang Zhang, Hongtao Xie, Zuan Gao, Yuxin Wang

Scene text images contain not only style information (font, background) but also content information (character, texture). Different scene text tasks need different information, but previous representation learning methods use tightly coupled features for all tasks, resulting in sub-optimal performance. We propose a Disentangled Representation Learning framework (DARLING) aimed at disentangling these two types of features for improved adaptability in better addressing various downstream tasks (choose what you really need). Specifically, we synthesize a dataset of image pairs with identical style but different content. Based on the dataset, we decouple the two types of features by the supervision design. Clearly, we directly split the visual representation into style and content features, the content features are supervised by a text recognition loss, while an alignment loss aligns the style features in the image pairs. Then, style features are employed in reconstructing the counterpart image via an image decoder with a prompt that indicates the counterpart’s content. Such an operation effectively decouples the features based on their distinctive properties. To the best of our knowledge, this is the first time in the field of scene text that disentangles the inherent properties of the text images. Our method achieves state-of-the-art performance in Scene Text Recognition, Removal, and Editing.
PDF Accepted to CVPR 2024

点此查看论文截图

TALC: Time-Aligned Captions for Multi-Scene Text-to-Video Generation

Authors:Hritik Bansal, Yonatan Bitton, Michal Yarom, Idan Szpektor, Aditya Grover, Kai-Wei Chang

Recent advances in diffusion-based generative modeling have led to the development of text-to-video (T2V) models that can generate high-quality videos conditioned on a text prompt. Most of these T2V models often produce single-scene video clips that depict an entity performing a particular action (e.g., a red panda climbing a tree'). However, it is pertinent to generate multi-scene videos since they are ubiquitous in the real-world (e.g.,a red panda climbing a tree’ followed by the red panda sleeps on the top of the tree'). To generate multi-scene videos from the pretrained T2V model, we introduce Time-Aligned Captions (TALC) framework. Specifically, we enhance the text-conditioning mechanism in the T2V architecture to recognize the temporal alignment between the video scenes and scene descriptions. For instance, we condition the visual features of the earlier and later scenes of the generated video with the representations of the first scene description (e.g.,a red panda climbing a tree’) and second scene description (e.g., `the red panda sleeps on the top of the tree’), respectively. As a result, we show that the T2V model can generate multi-scene videos that adhere to the multi-scene text descriptions and be visually consistent (e.g., entity and background). Further, we finetune the pretrained T2V model with multi-scene video-text data using the TALC framework. We show that the TALC-finetuned model outperforms the baseline methods by 15.5 points in the overall score, which averages visual consistency and text adherence using human evaluation. The project website is https://talc-mst2v.github.io/.
PDF 23 pages, 12 figures, 8 tables

点此查看论文截图

FastScene: Text-Driven Fast 3D Indoor Scene Generation via Panoramic Gaussian Splatting

Authors:Yikun Ma, Dandan Zhan, Zhi Jin

Text-driven 3D indoor scene generation holds broad applications, ranging from gaming and smart homes to AR/VR applications. Fast and high-fidelity scene generation is paramount for ensuring user-friendly experiences. However, existing methods are characterized by lengthy generation processes or necessitate the intricate manual specification of motion parameters, which introduces inconvenience for users. Furthermore, these methods often rely on narrow-field viewpoint iterative generations, compromising global consistency and overall scene quality. To address these issues, we propose FastScene, a framework for fast and higher-quality 3D scene generation, while maintaining the scene consistency. Specifically, given a text prompt, we generate a panorama and estimate its depth, since the panorama encompasses information about the entire scene and exhibits explicit geometric constraints. To obtain high-quality novel views, we introduce the Coarse View Synthesis (CVS) and Progressive Novel View Inpainting (PNVI) strategies, ensuring both scene consistency and view quality. Subsequently, we utilize Multi-View Projection (MVP) to form perspective views, and apply 3D Gaussian Splatting (3DGS) for scene reconstruction. Comprehensive experiments demonstrate FastScene surpasses other methods in both generation speed and quality with better scene consistency. Notably, guided only by a text prompt, FastScene can generate a 3D scene within a mere 15 minutes, which is at least one hour faster than state-of-the-art methods, making it a paradigm for user-friendly scene generation.
PDF Accepted by IJCAI-2024

点此查看论文截图

Self-Supervised Pre-training with Symmetric Superimposition Modeling for Scene Text Recognition

Authors:Zuan Gao, Yuxin Wang, Yadong Qu, Boqiang Zhang, Zixiao Wang, Jianjun Xu, Hongtao Xie

In text recognition, self-supervised pre-training emerges as a good solution to reduce dependence on expansive annotated real data. Previous studies primarily focus on local visual representation by leveraging mask image modeling or sequence contrastive learning. However, they omit modeling the linguistic information in text images, which is crucial for recognizing text. To simultaneously capture local character features and linguistic information in visual space, we propose Symmetric Superimposition Modeling (SSM). The objective of SSM is to reconstruct the direction-specific pixel and feature signals from the symmetrically superimposed input. Specifically, we add the original image with its inverted views to create the symmetrically superimposed inputs. At the pixel level, we reconstruct the original and inverted images to capture character shapes and texture-level linguistic context. At the feature level, we reconstruct the feature of the same original image and inverted image with different augmentations to model the semantic-level linguistic context and the local character discrimination. In our design, we disrupt the character shape and linguistic rules. Consequently, the dual-level reconstruction facilitates understanding character shapes and linguistic information from the perspective of visual texture and feature semantics. Experiments on various text recognition benchmarks demonstrate the effectiveness and generality of SSM, with 4.1% average performance gains and 86.6% new state-of-the-art average word accuracy on Union14M benchmarks. The code is available at https://github.com/FaltingsA/SSM.
PDF Accepted to IJCAI2024

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录